8 research outputs found

    Multisite Comparison of MRI Defacing Software Across Multiple Cohorts

    Get PDF
    With improvements to both scan quality and facial recognition software, there is an increased risk of participants being identified by a 3D render of their structural neuroimaging scans, even when all other personal information has been removed. To prevent this, facial features should be removed before data are shared or openly released, but while there are several publicly available software algorithms to do this, there has been no comprehensive review of their accuracy within the general population. To address this, we tested multiple algorithms on 300 scans from three neuroscience research projects, funded in part by the Ontario Brain Institute, to cover a wide range of ages (3–85 years) and multiple patient cohorts. While skull stripping is more thorough at removing identifiable features, we focused mainly on defacing software, as skull stripping also removes potentially useful information, which may be required for future analyses. We tested six publicly available algorithms (afni_refacer, deepdefacer, mri_deface, mridefacer, pydeface, quickshear), with one skull stripper (FreeSurfer) included for comparison. Accuracy was measured through a pass/fail system with two criteria; one, that all facial features had been removed and two, that no brain tissue was removed in the process. A subset of defaced scans were also run through several preprocessing pipelines to ensure that none of the algorithms would alter the resulting outputs. We found that the success rates varied strongly between defacers, with afni_refacer (89%) and pydeface (83%) having the highest rates, overall. In both cases, the primary source of failure came from a single dataset that the defacer appeared to struggle with - the youngest cohort (3–20 years) for afni_refacer and the oldest (44–85 years) for pydeface, demonstrating that defacer performance not only depends on the data provided, but that this effect varies between algorithms. While there were some very minor differences between the preprocessing results for defaced and original scans, none of these were significant and were within the range of variation between using different NIfTI converters, or using raw DICOM files

    De‐identification procedures for magnetic resonance images and the impact on structural brain measures at different ages

    Get PDF
    Surface rendering of MRI brain scans may lead to identification of the participant through facial characteristics. In this study, we evaluate three methods that overwrite voxels containing privacy‐sensitive information: Face Masking, FreeSurfer defacing, and FSL defacing. We included structural T1‐weighted MRI scans of children, young adults and older adults. For the young adults, test–retest data were included with a 1‐week interval. The effects of the de‐identification methods were quantified using different statistics to capture random variation and systematic noise in measures obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing impacted brain voxels in some scans especially in younger participants. FreeSurfer defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing preserved identifiable characteristics around the eyes or mouth in some scans. For all de‐identification methods regional brain measures of subcortical volume, cortical volume, cortical surface area, and cortical thickness were on average highly replicable when derived from original versus de‐identified scans with average regional correlations >.90 for children, young adults, and older adults. Small systematic biases were found that incidentally resulted in significantly different brain measures after de‐identification, depending on the studied subsample, de‐identification method, and brain metric. In young adults, test–retest intraclass correlation coefficients (ICCs) were comparable for original scans and de‐identified scans with average regional ICCs >.90 for (sub)cortical volume and cortical surface area and ICCs >.80 for cortical thickness. We conclude that apparent visual differences between de‐identification methods minimally impact reliability of brain measures, although small systematic biases can occur

    Application of a convolutional neural network to the quality control of MRI defacing

    Get PDF
    Large-scale neuroimaging datasets present unique challenges for automated processing pipelines. Motivated by a large clinical trials dataset with over 235,000 MRI scans, we consider the challenge of defacing — anonymisation to remove identifying facial features. The defacing process must undergo quality control (QC) checks to ensure that the facial features have been removed and that the brain tissue is left intact. Visual QC checks are time-consuming and can cause delays in preparing data. We have developed a convolutional neural network (CNN) that can assist with the QC of the application of MRI defacing; our CNN is able to distinguish between scans that are correctly defaced and can classify defacing failures into three sub-types to facilitate parameter tuning during remedial re-defacing. Since integrating the CNN into our anonymisation pipeline, over 75,000 scans have been processed. Strict thresholds have been applied so that ambiguous classifications are referred for visual QC checks, however all scans still undergo an efficient verification check before being marked as passed. After applying the thresholds, our network is 92% accurate and can classify nearly half of the scans without the need for protracted manual checks. Our model can generalise across MRI modalities and has comparable performance when tested on an independent dataset. Even with the introduction of the verification checks, incorporation of the CNN has reduced the time spent undertaking QC checks by 42% during initial defacing, and by 35% overall. With the help of the CNN, we have been able to successfully deface 96% of the scans in the project whilst maintaining high QC standards. In a similarly sized new project, we would expect the model to reduce the time spent on manual QC checks by 125 h. Our approach is applicable to other projects with the potential to greatly improve the efficiency of imaging anonymisation pipelines

    Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools

    Get PDF
    The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field

    Pseudonymization of neuroimages and data protection: Increasing access to data while retaining scientific utility

    Get PDF
    open access articleFor a number of years, facial features removal techniques such as ‘defacing’, ‘skull stripping’ and ‘face masking/ blurring’, were considered adequate privacy preserving tools to openly share brain images. Scientifically, these measures were already a compromise between data protection requirements and research impact of such data. Now, recent advances in machine learning and deep learning that indicate an increased possibility of re- identifiability from defaced neuroimages, have increased the tension between open science and data protection requirements. Researchers are left pondering how best to comply with the different jurisdictional requirements of anonymization, pseudonymization or de-identification without compromising the scientific utility of neuroimages even further. In this paper, we present perspectives intended to clarify the meaning and scope of these concepts and highlight the privacy limitations of available pseudonymization and de-identification techniques. We also discuss possible technical and organizational measures and safeguards that can facilitate sharing of pseudonymized neuroimages without causing further reductions to the utility of the data

    Preserving Privacy in Structural Neuroimages

    No full text
    Part 9: Short PapersInternational audienceEvolving technology has enabled large-scale collaboration for neuroimaging data. For high resolution structural neuroimages, these data are inherently identifiable and must be given the same privacy considerations as facial photographs. To preserve privacy, identifiable metadata should be removed or replaced, and the voxel data de-identified to remove facial features by applying skull stripping or a defacing algorithm. The Quickshear Defacing method uses a convex hull to identify a plane that divides the volume into two parts, one containing facial features and another the brain volume, and removes the voxels on the facial features side. This method is an effective alternative to existing solutions and can provide reductions in running time
    corecore