3 research outputs found

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Energy–delay tradeoff in a two-way relay with network coding

    Get PDF
    A queueing model for a relay in a communication network that is employing network coding is introduced. It is shown that communication networks with coding are closely related to queueing networks with positive and negative customers. The tradeoff between minimizing energy consumption and minimizing delay for a two-way relay is investigated. Analytical upper and lower bounds on the energy consumption and the delay are obtained using a Markov reward approach. Exact expressions are given for the minimum energy consumption and the minimum delay that are attainable

    Network coding for computer networking

    Get PDF
    Conventional communication networks route data packets in a store-and-forward mode. A router buffers received packets and forwards them intact towards their intended destination. Network Coding (NC), however, generalises this method by allowing the router to perform algebraic operations on the packets before forwarding them. The purpose of NC is to improve the network performance to achieve its maximum capacity also known as max-flow min-cut bound. NC has become very well established in the field of information theory, however, practical implementations in real-world networks is yet to be explored. In this thesis, new implementations of NC are brought forward. The effect of NC on flow error control protocols and queuing over computer networks is investigated by establishing and designing a mathematical and simulation framework. One goal of such investigation is to understand how NC technique can reduce the number of packets required to acknowledge the reception of those sent over the network while error-control schemes are employed. Another goal is to control the network queuing stability by reducing the number of packets required to convey a set of information. A custom-built simulator based on SimEvents® has been developed in order to model several scenarios within this approach. The work in this thesis is divided into two key parts. The objective of the first part is to study the performance of communication networks employing error control protocols when NC is adopted. In particular, two main Automatic Repeat reQuest (ARQ) schemes are invoked, namely the Stop-and-Wait (SW) and Selective Repeat (SR) ARQ. Results show that in unicast point-to point communication, the proposed NC scheme offers an increase in the throughput over traditional SW ARQ between 2.5% and 50.5% at each link, with negligible decoding delay. Additionally, in a Butterfly network, SR ARQ employing NC achieves a throughput gain between 22% and 44% over traditional SR ARQ when the number of incoming links to the intermediate node varies between 2 and 5. Moreover, in an extended Butterfly network, NC offered a throughput increase of up to 48% under an error-free scenario and 50% in the presence of errors. Despite the extensive research on synchronous NC performance in various fields, little has been said about its queuing behaviour. One assumption is that packets are served following a Poisson distribution. The packets from different streams are coded prior to being served and then exit through only one stream. This study determines the arrival distribution that coded packets follow at the serving node. In general this leads to study general queuing systems of type G/M/1. Hence, the objective of the second part of this study is twofold. The study aims to determine the distribution of the coded packets and estimate the waiting time faced by coded packets before their complete serving process. Results show that NC brings a new solution for queuing stability as evidenced by the small waiting time the coded packets spend in the intermediate node queue before serving. This work is further enhanced by studying the server utilization in traditional routing and NC scenarios. NC-based M/M/1 with finite capacity K is also analysed to investigate packet loss probability for both scenarios. Based on the results achieved, the utilization of NC in error-prone and long propagation delay networks is recommended. Additionally, since the work provides an insightful prediction of particular networks queuing behaviour, employing synchronous NC can bring a solution for systems’ stability with packet-controlled sources and limited input buffers
    corecore