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a b s t r a c t

A queueing model for a relay in a communication network that is employing network
coding is introduced. It is shown that communication networks with coding are closely
related to queueing networks with positive and negative customers. The tradeoff between
minimizing energy consumption andminimizing delay for a two-way relay is investigated.
Analytical upper and lower bounds on the energy consumption and the delay are obtained
using a Markov reward approach. Exact expressions are given for the minimum energy
consumption and the minimum delay that are attainable.
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1. Introduction

We consider a two-way relay communication network in which the relay is performing network coding. The two-way
relay receives packets from two different connections that need to be forwarded. Network coding, cf., [1,2], is based on
the observation that in addition to simply forwarding packets it can be useful to do additional processing at the relay and
combine different packets before forwarding them. The network coding operation performed by the two-way relay is to
combine pairs of two packets, one from each connection, by taking the elementwise exclusive-or of bits in both packets,
and forward only the combined packet. Since less packets are transmitted, energy consumption is reduced. The influence
on packet delay, i.e., queue length, is not obvious. It might be reduced since overall less packets are transmitted. However, it
might also be increased since the synchronization required for coding introduces delays. In the current paper we analyze in
more detail the energy consumption and the packet delay in the relay and compare these with the performance of a relay
that simply forwards all packets and is not performing network coding.

Network coding in a two-way relay has been extensively studied. Initial work, for instance [3–5], focused on the
assumption of saturated queues, i.e., on the assumption that the relay always has packets from both connections available.
More recent work is dealing with stochastic arrivals of packets at the relay in which case it can happen that there are no
packets available for one of the connections. This implies that the relay can now decide to transmit an uncoded packet or
to wait for a coding opportunity provided by the arrival of a new packet. In [6] a queueing model is developed in which the
decision to transmit an uncoded packet may depend on the number of packets in the queues. The impact of these decisions
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on the energy–delay tradeoff is analyzed in [7]. In [8] an analysis is made for the case that packets are never transmitted
uncoded. The scenario that packets are always transmitted uncoded if opportunity arises is studied in [9,10].

The analysis of stochastic arrivals at a relay with network coding has been extended in many directions: the additional
delay incurred by processing is taken into account in [11] —more general network structures have been considered in [12] —
the influence of ALOHA type medium access protocols is considered in [13] — the impact of a limited buffer size at the relay
and optimal buffer allocation policies are analyzed in [14]— in [15] the stability region underQoS constraints is analyzed. The
current work is most closely related to [7] in the sense that we consider the energy–delay tradeoff arising from transmitting
uncoded packets. Before discussing the contributions of the current work and the relation to [7] we discuss the model and
the methods that have been used.

Wemodel the two-way relay as a two-dimensional continuous-timeMarkov process. In the model we keep two queues,
one for packets from each of the sessions. Packets from the two sessions arrive independently. We model the transmission
of a combination of packets as the simultaneous departure of two packets, one packet from each queue. As observed in [7,8],
and formulated precisely in Section 4, in order to keep the system stable, it is necessary to also transmit uncoded packets. In
particular, if packets are present in one queue while the other queue is empty, uncoded packets will need to be transmitted.
We will, therefore, allow for operating policies in which packets from one queue can be transmitted uncoded if the other
queue is empty. In particular we analyze policies that, given the opportunity to transmit a packet from the one queue, while
the other queue is empty, transmit this packet with some fixed probability. These policies form a generalization of the
policies considered in [7] where this uncoded packet would either always or never be transmitted.

Our queueing model has similar properties as a queueing network with positive and negative customers [16]. Observe
that packets arrive at the relay one by one, but that packets depart from two queues simultaneously. This is the typical
behavior of queueing networkswith positive and negative customers. However, due to the behavior when one of the queues
is empty, there is not always a one-to-one correspondence. It is demonstrated in the current paper that if the operating policy
that decides when to transmit an uncoded packet is chosen carefully, our model is a queueing network with positive and
negative customers. In this case the system is known to have a geometric product-form stationary distribution. For other
operating policies this is not the case. Therefore, exact results on performance cannot always readily be obtained and we
will resort to finding analytical performance bounds. These bounds will be obtained from Markov reward error bounding
techniques [17] by relating the performance of our model to that of a perturbed model with a product-form stationary
distribution, i.e., a network with positive and negative customers.

Networks with positive and negative customers have previously been applied for the analysis of communication
networks. In [18–20] this was done for energy-aware routing, in [21] for energy management in the cloud and in [22] for
resource allocation inmultimedia systems. The application of networks with positive and negative customers to relays with
network coding is new. A survey on networks with positive and negative customers is given in [23] and a collection of
literature in the area is provided in [24].

The contributions of the current work are:

1. The relation between a queueing model for a two-way relay with network coding and a network with positive and
negative customers is demonstrated.

2. Analytical upper and lower bounds on the energy consumption and the delay in the two-way relay are given.
3. Exact expressions for the minimum possible energy consumption and minimum possible delay are given.

As will be discussed in Section 6, performing network coding at the relay in order to reduce energy consumption might lead
to long delays. This was already observed in [8] and it is confirmed by our analytical upper and lower bounds. As discussed
above, our policies form a generalization of some of the policies from [7]. The current paper extends our work presented
in [25], where only energy consumption was considered. The bounds on energy consumption that were provided in [25]
have been significantly strengthened.

The remainder of this paper is organized as follows. In Section 2 we specify the continuous-time Markov chain that will
be analyzed and the performance measures of interest. Section 3 is devoted to discussing some of the preliminaries that
are required later in the paper. In particular we discuss queueing networks with negative customer and Markov reward
error bounds. In Section 4 we give necessary and sufficient conditions for ergodicity of our model. Performance bounds on
expected queue size and energy consumption are presented in 5. Numerical examples of the results obtained in the paper
are given in Section 6. Finally, in Section 7 we discuss the results presented in this paper and offer suggestions for future
work.

2. Model and problem statement

We consider a single node in a wireless network that is acting as a relay for two sessions and develop two different
continuous-time queueing models. The classical case without network coding is covered by the first model. In the second
model network coding is used. Packets from both sessions arrive at the node according to independent Poisson processes
with rate λ1 and λ2. The time required to transmit a packet, i.e., to provide service for a packet, is exponentially distributed
with rate µ.

The uncoded system is modeled as a single server operating on a single queue using a FIFO policy. Hence the uncoded
system is an M/M/1 queue with arrival rate λ1 + λ2 and service rate µ.
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Fig. 1. Transition diagram for Q γ1,γ2 , the Markov process of the coded system.

In the coded system a separate queue is kept for each session, leading to a two-dimensional model in which the
state variables N and M denote the number of packets contained in each of the queues. Network coding is employed by
transmitting linear combinations of two packets, one packet from each queue in a combination. This means that a service
completionwill reduce the number of packets in both queues by one. If only one queue has a packet it is transmitted uncoded
and a service completion will remove only one packet from a queue. Since transmitting an uncoded packet is unfavorable
in terms of, for instance, energy consumption, we allow for an operating policy in which uncoded packets will not always
be transmitted if opportunity arises.

If there is the opportunity to transmit a packet from the first queue, while the second queue is empty, this packet will be
transmitted with probability γ1. Similarly, packets from the second queue will be transmitted uncoded with probability γ2.

The above description leads to a continuous-time Markov chain Q γ1,γ2 on state space N2
0 with transition rates qγ1,γ2

defined as

qγ1,γ2
n,m (i, j) =


λ1, if i = 1, j = 0, n ≥ 0,m ≥ 0,
λ2, if i = 0, j = 1, n ≥ 0,m ≥ 0,
µ, if i = −1, j = −1, n > 0,m > 0,
γ1µ, if i = −1, j = 0, n > 0,m = 0,
γ2µ, if i = 0, j = −1, n = 0,m > 0,
0, otherwise.

(1)

where qγ1,γ2
n,m (i, j) denotes the transition rate from state (n,m) to state (n+ i,m+ j). To ensure irreducibility of the chain we

assume λ1 > 0, λ2 > 0 and µ > 0. Remember that γ1 and γ2 denote probabilities and take values in the interval [0, 1]. The
transition structure is depicted in the transition diagram of Fig. 1. To simplify the notation in the remainder of the paper we
introduce

ρ1 =
λ1

µ
, ρ2 =

λ2

µ
, γ ∗

1 =
ρ1 − ρ2

1 − ρ2
, γ ∗

2 =
ρ2 − ρ1

1 − ρ1
. (2)

In Section 4 it will become clear that γ ∗

1 and γ ∗

2 are useful for expressing stability criteria.
Our interest is in two different steady-state performance measures of Q γ1,γ2 . To introduce notation, first consider an

arbitrary cost/reward function fβ1,β2 : N2
0 → [0, ∞), depending on parameters β1 and β2. Let

F γ1,γ2
β1,β2

= Eγ1,γ2 [fβ1,β2(N,M)], (3)

where the expected value is over the stationary distribution of the processQ γ1,γ2 . In the remainder wewill denote by capital
letters, the expected value of the cost function defined through the corresponding lower-case letter.

The first performancemeasure thatwe consider is the expected energy consumption per unit time. The energy consumed
by transmitting a packet is µ per unit time. Therefore, the energy consumed per unit time is

0, if n = 0,m = 0,
γ1µ, if n > 0,m = 0,
γ2µ, if n = 0,m > 0,
µ, if n > 0,m > 0,

(4)

where it is taken into account that a packet is transmitted with probability γ1 (γ2) if there is a packet in the first (second)
queue while the second (first) queue is empty. It follows that the expected energy consumption of Q γ1,γ2 equals

Cγ1,γ2
γ1,γ2

= Eγ1,γ2

cγ1,γ2(N,M)


, (5)

where the cost function c has additional parameters β1 and β2 and is defined as

cβ1,β2(n,m) = β1µ1{n>0,m=0} + β2µ1{n=0,m>0} + µ1{n>0,m>0}. (6)
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The energy consumption will be bounded in terms of C γ̂1,γ̂2
β1,β2

, for values of γ̂1, γ̂2, β1 and β2, not necessarily equal to γ1 or
γ2. We will sometimes denote Cγ1,γ2

γ1,γ2 as Cγ1,γ2 , omitting the subscripts.
The second performance measure of interest is the expected delay, i.e., the expected sojourn time of a packet in the

system. Without loss of generality we will consider the delay of packets of the first connection and denote it by Dγ1,γ2 . By
Little’s law it follows that the expected delay is Dγ1,γ2 = E[N]/λ1, leading to cost function

d(n,m) =
1
λ1

n. (7)

Remember, that the uncoded system is an M/M/1 queue with arrival rate λ1 + λ2 and service rate µ. Therefore, the
expected energy consumption in the uncoded system is

Cuncoded = λ1 + λ2 (8)

and the expected delay is

Duncoded =
1

µ − λ1 − λ2
. (9)

3. Preliminaries

Before starting the analysis of the process Q γ1,γ2 in the next section we will provide some background on the techniques
that will be used. First, we discuss queueing networks with positive and negative customers, their relevance for the work
at hand and the stationary distribution of such networks. Next, we provide results on Markov reward error bounding
techniques.

3.1. Queueing networks with positive and negative customers

We start this section with an interpretation of Q γ1,γ2 for the case that γ1 + γ2 = 1. Under this condition the network
can be interpreted as having two dedicated servers, one for each queue, operating at rates γ1µ and γ2µ. In addition, if a
packet is leaving from one of the queues and there is a packet in the other queue, that packet is also removed from the
queue. This type of queueing network was first studied by Gelenbe [16]. The networks considered by Gelenbe in [16] are
very similar to Jackson networks, with the additional feature that there are two types of customers: positive and negative.
Positive customers, upon arriving at a node, require service and are placed in the queue. Negative customers, upon arriving at
a queue, do not require service and instead, remove a positive customer from the queue. Upon completing service, there are
three possible actions for a positive customer: (1) it leaves the system, (2) it enters another queue in the system as a positive
customer, or (3) it enters another queue in the system as a negative customer. The customer chooses randomly, with a fixed
probability distribution, which action to take and/or which queue to join. It is shown in [16,26] that these networks have a
product-form stationary distribution. The parameters of the distribution are the solution of a set of polynomial equations
that can be given for any network of the form described above. We give the resulting set of equations for the system Q γ1,γ2

under the condition that γ1 + γ2 = 1.

Theorem 1 (Gelenbe [16]). Consider the Markov process Q γ1,γ2 with γ1 + γ2 = 1. If the system of equations in σ1 and σ2 given
by

γ1σ1 + γ2σ1σ2 = ρ1, γ2σ2 + γ1σ1σ2 = ρ2, (10)

has a unique solution satisfying 0 < σ1 < 1 and 0 < σ2 < 1, then the stationary distribution π(n,m) is given by

π(n,m) = (1 − σ1) σ n
1 (1 − σ2) σm

2 .

The above result is a special case of the result by Gelenbe, for a network of two queues with service rates γ1µ and γ2µ,
external arrival of positive customerswith rates λ1 and λ2, no external arrivals of negative customers, and customers leaving
one queue entering the other queue as negative customers.

Remark 1. The above theorem provides an expression for the stationary distribution under the condition that a unique
solution 0 < σ1 < 1 and 0 < σ2 < 1 exists. Note that this corresponds exactly to the condition that the process is stable,
i.e., ergodic. Necessary and sufficient conditions for stability are given in [27] in terms of the properties of a fixed point of
a continuous function derived from (10). This fixed point can, in general, not be given in explicit form. In Section 4 we will
obtain explicit stability criteria for Q γ1,γ2 based on the theory of two dimensional random walks in the positive orthant.

3.2. Markov reward error bounds

Since for γ1 + γ2 ≠ 1 the steady-state distribution of the queueing process cannot be obtained in a tractable analytical
form, we will use the Markov reward approach to obtain analytical approximations on the performance of Q γ1,γ2 . This
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technique, developed by van Dijk [28,29], is based on relating the steady-state performance of the process to the cumulative
reward structure in the discrete-time uniformized process. An introduction to this technique is given in, for instance, [17].
Throughout the remainder of this section we omit the dependence on γ1 and γ2 in the notation.

Let f : N2
0 → [0, ∞) be an arbitrary performance measure and denote by E [f (N,M)] the expected performance of Q

under the (unknown) stationary distribution π . In addition consider a second Markov process Q̄ on the same state space
N2

0, but with different transition rates q̄. Finally, consider a second performance measure f̄ : N2
0 → [0, ∞). Assume that the

stationary distribution for Q̄ , π̄ is known. We will approximate E [f (N,M)] in terms of Ē

f̄ (N,M)


, the expected value of

the perturbed measure under distribution π̄ .
Assume that Q and Q̄ can both be uniformized and let h be a suitable uniformization constant for both processes, i.e., let

h satisfy

h ≤


i,j

qn,m(i, j)

−1

and h ≤


i,j

q̄n,m(i, j)

−1

, (11)

for all (n,m) ∈ N2
0.

Let P denote the discrete-timeMarkov process obtained from uniformization of Q . For P the probability of jumping from
(n,m) to (n + i,m + j), pn,m(i, j), is defined as

pn,m(i, j) =

hqn,m(i, j), if (i, j) ≠ (0, 0),
1 − h


(i,j)≠0

qn,m(i, j), if (i, j) = (0, 0). (12)

On P consider a one step reward hf (n,m) whenever the system is in state (n,m). This leads to expected cumulative reward
F(k, n,m), incurred by the uniformized process at time step kwhen starting from state (n,m) at time 0, defined as

F(k + 1, n,m) = hf (n,m) +


i,j

pn,m(i, j)F(k, n + i,m + j), (13)

for k > 0 and F(0, n,m) = 0.
Using the above notation and definitions we are ready to state the results from [17] that will be used to obtain bounds

on E [f (N,M)].

Theorem 2 (van Dijk [17]). Let Q and Q̄ be two continuous-time Markov processes on the same state space N2
0, with transition

rates q and q̄, respectively. In addition consider the cost functions f and f̄ from N2
0 to [0, ∞). Suppose that there exists a function

ξ : N2
0 → [0, ∞) such that for all (n,m) ∈ N2

0 and k ∈ N0,f (n,m) − f̄ (n,m) +


i,j


qn,m(i, j) − q̄n,m(i, j)


· [F(k, n + i,m + j) − F(k, n,m)]

 ≤ ξ(n,m). (14)

Then E [f (N,M)] − Ē

f̄ (N,M)

 ≤


n,m

π̄(n,m)ξ(n,m). (15)

Theorem 3 (van Dijk [17]). Let Q and Q̄ be two continuous-time Markov processes on the same state space N2
0, with transition

rates q and q̄, respectively. In addition consider the cost functions f and f̄ from N2
0 to [0, ∞). Suppose that for all (n,m) ∈ N2

0 and
k ∈ N0,

f (n,m) − f̄ (n,m) +


i,j


qn,m(i, j) − q̄n,m(i, j)


· [F(k, n + i,m + j) − F(k, n,m)] ≤ 0. (16)

Then

E [f (N,M)] ≤ Ē

f̄ (N,M)


. (17)

Remark 2. The key step in applying Theorems 2 or 3 is to bound terms of the form

F(k, n + i,m + j) − F(k, n,m). (18)

We will refer to terms of this type as bias terms.
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Remark 3. Clearly, if a function ξ : N2
0 → [0, ∞) can be found such that both (14) and (16) hold then Theorems 2 and 3

can be combined to

−


n,m

π̄(n,m)ξ(n,m) ≤ E [f (N,M)] − Ē

f̄ (N,M)


≤ 0. (19)

Remark 4. If, in (16), ≤ is replaced by ≥ then Theorem 3 will provide a lower bound on E [f (N,M)] instead of an upper
bound, i.e., E [f (N,M)] ≥ Ē [f (N,M)].

4. Stability

The continuous-time Markov process Q γ1,γ2 is stable if and only if the corresponding uniformized process is stable. The
uniformized process, is a two-dimensional homogeneous random walk in the positive quadrant, a type of process that
has been extensively studied; see, for instance, [30,31] and the references therein. Necessary and sufficient conditions for
ergodicity are given in [30]. For completeness we present the stability conditions for Q γ1,γ2 in the next theorem. These
conditions demonstrate the purpose of introducing γ ∗

1 and γ ∗

2 in (2) as γ ∗

1 = (ρ1−ρ2)/(1−ρ2) and γ ∗

2 = (ρ2−ρ1)(1−ρ1).

Theorem 4. The process Q γ1,γ2 is ergodic if and only if ρ1 < 1, ρ2 < 1, γ1 > γ ∗

1 and γ2 > γ ∗

2 .

Proof. Directly from [30, Theorem 1.2.1], by taking into account that γ1 and γ2 denote probabilities and hence lie in the
interval [0, 1]. �

Intuitively, if ρ1 > ρ2 (ρ1 < ρ2), some packets from the first (second) queue will have to be transmitted uncoded.
Theorem 4 quantifies the minimum fraction of packets that need to be transmitted uncoded. Note, that even if ρ1 = ρ2, it
is not possible to have γ1 = γ2 = 0. This was also observed in [7,8]. In the remainder of this section we discuss how this
result can be obtained directly without resorting to the theory developed in [30] or the methods used in[7,8].

Consider an alternative representation of Q γ1,γ2 in which the state variables are N , the number of packets in the first
queue, and K = N − M , the difference between the number of packets in the first and the second queue. Observe, that if
γ1 = γ2 = 0, the only changes to K occur from arrivals of packets, i.e., K increases by one with rate λ1 and decreases with
one with rate λ2. The corresponding discrete-time process, obtained after uniformization, is a random walk on Z and is not
ergodic. If ρ1 = ρ2, the process is null recurrent.

5. Performance

5.1. The perturbed process

All performance bounds in this section will be obtained by perturbing some of the transition rates along the boundary
of the state space. More precisely, we obtain bounds on the performance of our process of interest Q γ1,γ2 in terms of the
performance of the perturbed process Q̄ α,1−α , where 0 ≤ α ≤ 1 is a free parameter and where the bar notation is used to
emphasize the role of the second process. Note that for the perturbed process we have the following transition rates

q̄α,1−α
n,m (i, j) =


αµ, if i = −1, j = 0, n > 0,m = 0,
(1 − α)µ, if i = 0, j = −1, n = 0,m > 0,
qγ1,γ2
n,m (i, j), otherwise.

(20)

The effect of the perturbation is that along the vertical axis the rate towards the origin is changed from γ1µ to αµ. Along the
vertical axis the rate towards the origin changes fromγ2µ to (1−α)µ. In order to apply Theorems2 or 3weneed to obtain the
sign of the LHS of (16) or a bound on the LHS of (14), respectively. Since, qn,m(i, j) = q̄n,m(i, j) unless n > 0,m = 0, i = −1
and j = 0 or n = 0,m > 0, i = 0 and j = −1, we only need to obtain bounds on the following two bias terms

F(k, n, 0) − F(k, n − 1, 0), (21)
F(k, 0,m) − F(k, 0,m − 1). (22)

These bounds will be given for the specific performance measures of interest in Sections 5.2 and 5.3.
The parameter α can be chosen freely, but the process Q̄ α,1−α should be ergodic. The next theorem states that given

λ1, λ2 and µ satisfying λ1 < µ and λ2 < µ, a suitable α always exists. Moreover it gives the stationary distribution of
Q̄ α,1−α as given by Theorem 1.

Theorem 5. The system Q̄ α,1−α is ergodic iff

γ ∗

1 < α < 1 − γ ∗

2 , (23)

in which case it has steady-state distribution

π̄α(n,m) = [1 − σ1(α)] σ1(α)n [1 − σ2(α)] σ2(α)m, (24)
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where σ1(α) and σ2(α) are the unique solution of

ασ1(α) + (1 − α)σ1(α)σ2(α) = ρ1,

(1 − α)σ2(α) + ασ1(α)σ2(α) = ρ2,
(25)

satisfying 0 < σ1(α) < 1 and 0 < σ2(α) < 1. Given ρ1 < 1 and ρ2 < 1 it is always possible to choose α such that Q̄ α,1−α is
ergodic.

Proof. The stability condition (23) follows directly fromTheorem4; the stationary distribution (24) follows fromTheorem1.
For the last statement note that besides condition (23), we need 0 ≤ α ≤ 1. Therefore, we need to prove that

(γ ∗

1 , 1 − γ ∗

2 ) ∩ [0, 1] ≠ ∅. (26)

First we show that (γ ∗

1 , 1 − γ ∗

2 ) ≠ ∅ by proving that

γ ∗

1 =
ρ1 − ρ2

1 − ρ2
<

1 − ρ2

1 − ρ1
= 1 − γ ∗

2 (27)

for 0 < ρ1 < 1 and 0 < ρ2 < 1. This follows directly by rewriting the inequality as

0 <


ρ1 −

1
2

2

+


ρ2 −

1
2

2

+


ρ1ρ2 +

1
2


. (28)

Finally, (26), follows from the observation that γ ∗

1 < 1 and 1 − γ ∗

2 > 0. �

Remark 5. The above theorem gives the stationary distribution in implicit form, i.e., σ1(α) and σ2(α) are given as the
solutions of a system of quadratic equations. The explicit solution is

σi(α) =

−bi +

b2i − 4aici

2ai
, (29)

where

a1 = α, b1 = 1 − α + ρ2
1 − α

α
− ρ1, c1 = −ρ1

1 − α

α
,

a2 = 1 − α, b2 = α + ρ1
α

1 − α
− ρ2, c2 = −ρ2

α

1 − α
.

It is readily verified that (29) provides the roots of the system of equation that satisfy 0 < σi(α) < 1, i = 1, 2. Details are
provided in [32].

5.2. Delay

The first performance measure of interest is Dγ1,γ2 , the expected delay of packets of the first session. We established in
Section 2 that Dγ1,γ2 = E[N]/λ1. Our first result gives the exact distribution of N if γ1 = 1.

Theorem 6. Let P(N = n) denote the probability that N = n in steady state. If γ1 = 1 then

P(N = n) = (1 − ρ1)ρ
n
1 . (30)

Proof. Consider the one-dimensional continuous Markov process in N , the number of packets in the first queue. The
transition rates of this process are independent of the number of packets in the second queue. The process is equivalent
to a M/M/1 queue with load ρ1. �

We will make use of the comparison result of Theorem 3. The next technical lemma provides the required signs of the
bias terms. The proof of the lemma is tedious, but mostly mechanical and therefore omitted here. It is based on induction in
k, full details are provided in [32].

Lemma 1. Let d : N2
0 → [0, ∞), d(n,m) = n/λ1. For all (n,m) ∈ N2

0 and k ∈ N0

Dγ1,γ2(k, n + 1,m) − Dγ1,γ2(k, n,m) ≥ 0, (31)

Dγ1,γ2(k, n,m + 1) − Dγ1,γ2(k, n,m) ≤ 0. (32)

The first use of the above lemma is in establishing a monotonicity result.
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Theorem 7. The expected delay of packets of the first session of Q γ1,γ2 is monotone in γ1 and γ2. More precisely,

Dγ1,γ2 ≤ Dγ̃1,γ2 , if γ1 > γ̃1, (33)

Dγ1,γ2 ≥ Dγ1,γ̃2 , if γ2 > γ̃2. (34)

Proof. Follows directly from Lemma 1 and Theorem 3 by observing that d does not depend on γ1 and γ2. �

Let

D∗
= inf{Dγ1,γ2; γ1 > γ ∗

1 , γ2 > γ ∗

2 }. (35)

From Theorems 6 and 7 we directly obtain the value of D∗.

Corollary 1. The minimum delay is (µ − λ1)
−1, i.e., D∗

= (µ − λ1)
−1.

Proof. From Theorem 7 it follows that the minimum of Dγ1,γ2 is attained at γ1 = 1. The result follows directly from
Theorem 6. �

Next,we provide bounds onDγ1,γ2 . The fact thatDγ1,γ2(k, n+1, 0)−Dγ1,γ2(k, n, 0) andDγ1,γ2(k, 0,m+1)−Dγ1,γ2(k, 0,m)
have different signs provides the opportunity to obtain both upper and lower bounds on Dγ1,γ2 using only the comparison
result of Theorem 3. In particular, we can either choose α = γ1 or α = 1− γ2 for the perturbed system, leading to an upper
respectively a lower bound, or vice versa depending on the value of γ1 + γ2 as will become clear in Theorem 8. Since the
perturbed system needs to be stable, i.e., γ ∗

1 ≤ α ≤ 1−γ ∗

2 from Theorem 5, it is not possible to obtain both upper and lower
comparison bounds for all values of γ1 and γ2.

Theorem 8. The expected delay of packets of the first session of Q γ1,γ2 is bounded as

Dγ1,γ2 ≥
σ1(γ1)

λ1 [1 − σ1(γ1)]
, if


γ1 + γ2 ≥ 1, and
γ1 < 1 − γ ∗

2 ,
(36)

Dγ1,γ2 ≤
σ1(1 − γ2)

λ1 [1 − σ1(1 − γ2)]
, if


γ1 + γ2 ≥ 1, and
γ2 < 1 − γ ∗

1 ,
(37)

Dγ1,γ2 ≤
σ1(γ1)

λ1 [1 − σ1(γ1)]
, if


γ1 + γ2 ≤ 1, and
γ1 < 1 − γ ∗

2 ,
(38)

Dγ1,γ2 ≥
σ1(1 − γ2)

λ1 [1 − σ1(1 − γ2)]
, if


γ1 + γ2 ≤ 1, and
γ2 < 1 − γ ∗

1 .
(39)

Proof. First consider α = γ1, which from condition (23) in Theorem 5 can be used only if γ1 < 1 − γ ∗

2 . The performance of
the perturbed system is given by

Ēγ1,1−γ1 [d(N,M)] = Ēγ1,1−γ1 [N/λ1] =
σ1(γ1)

λ1 [1 − σ1(γ1)]
. (40)

To decide whether the above expression provides an upper or a lower bound note that

qγ1,γ2
0,m (0, −1) − q̄γ1,1−γ1

0,m (0, −1) ≥ 0, if γ1 + γ2 ≥ 1,

qγ1,γ2
0,m (0, −1) − q̄γ1,1−γ1

0,m (0, −1) ≤ 0, if γ1 + γ2 ≤ 1.

The above inequalities, together with Lemma 1 and Theorem 3, lead to the bounds given in (36) and (38).
Next consider α = 1 − γ2. The ergodicity condition (23) reduces to γ2 < 1 − γ ∗

1 . Finally, the inequalities

qγ1,γ2
n,0 (−1, 0) − q̄γ1,1−γ1

n,0 (−1, 0) ≥ 0, if γ1 + γ2 ≥ 1,

qγ1,γ2
n,0 (−1, 0) − q̄γ1,1−γ1

n,0 (−1, 0) ≤ 0, if γ1 + γ2 ≤ 1,

lead to bounds (37) and (39). �

Conjecture 1. For all values (n,m) ∈ N2
0, |D

γ1,γ2(k, n+ 1, 0) −Dγ1,γ2(k, n, 0)| and |Dγ1,γ2(k, 0,m+ 1) −Dγ1,γ2(k, 0,m)| are
bounded uniformly in k.

Remark 6. The bounds of Theorem 8 are only valid for specific ranges of values for γ1 and γ2. If Conjecture 1 holds it is
possible to obtain error bounds on the expected delay using Theorem 2. The bounds would be valid for all parameter ranges
and possibly better in the ranges already covered by Theorem 8.
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5.3. Energy consumption

The second performance measure for which we obtain bounds is the expected energy consumption Cγ1,γ2 = Cγ1,γ2
γ1,γ2 =

Eγ1,γ2 [cγ1,γ2(N,M)]with cost function cγ1,γ2 defined in (6). In addition to the sign of the bias termswe are also able to obtain
bounds on their size. As for the proof of Lemma1 the proof follows straightforwardly using induction in k. Details are omitted
here, but provided in [32].

Lemma 2. Let cγ1,γ2 : N2
0 → [0, ∞),

cγ1,γ2(n,m) = γ1µ1{n>0,m=0} + γ2µ1{n=0,m>0} + µ1{n>0,m>0}.

For all (n,m) ∈ N2
0 and k ∈ N0

0 ≤ Cγ1,γ2
γ1,γ2

(k, n + 1,m) − Cγ1,γ2
γ1,γ2

(k, n,m) ≤ 1, (41)

0 ≤ Cγ1,γ2
γ1,γ2

(k, n,m + 1) − Cγ1,γ2
γ1,γ2

(k, n,m) ≤ 1. (42)

The signs of the bias terms can be used to establish the following monotonicity result.

Theorem 9. The energy consumption of Q γ1,γ2 is monotone in γ1 and γ2. More precisely,

Cγ1,γ2
γ1,γ2

≥ C γ̃1,γ2
γ̃1,γ2

, if γ1 > γ̃1, (43)

Cγ1,γ2
γ1,γ2

≥ Cγ1,γ̃2
γ1,γ̃2

, if γ2 > γ̃2. (44)

Proof. Weuse Theorem 3 to compareQ γ1,γ2 under cost function cγ1,γ2 withQ γ̃1,γ2 under cost function cγ̃1,γ2 , where γ1 > γ̃1.
Note that contrary to the monotonicity result of Theorem 7, the reward function in the perturbed model is different from
the original reward function. Using Lemma 2 we obtain, for n > 0

i,j


qn,0(i, j) − q̄n,0(i, j)


[C(k, n + i, j) − C(k, n, 0)] = (γ1 − γ̃1)µ [C(k, n − 1, 0) − C(k, n, 0)]

≥ −(γ1 − γ̃1)µ. (45)

Therefore,

cγ1,γ2(n, 0) − cγ̃1,γ2(n, 0) +


i,j


qn,0(i, j) − q̄n,0(i, j)


· [C(k, n + i, j) − C(k, n, 0)] ≥ 0, (46)

and (43) follows from Theorem 3. Monotonicity in γ2 follows in similar fashion. �

Let

C∗
= inf{Cγ1,γ2; γ1 > γ ∗

1 , γ2 > γ ∗

2 }. (47)

An exact expression for C∗ is given by the next result.

Theorem 10.

C∗
= max{λ1, λ2}. (48)

Proof. First, assume that λ1 > λ2. Under this assumption γ ∗

1 > 0 and γ ∗

2 < 0. By Theorem 9 it follows that

C∗
= lim

γ1→γ ∗
1

Cγ1,0
γ1,0

. (49)

Let 0 < ϵ < 1 − γ ∗

1 and consider the sequence of processes

Q γ1(l),0


l∈N , γ1(l) = γ ∗

1 + ϵ l. For each l ∈ N we give an

approximation on Cγ1(l),0
γ1(l),0

, the energy consumption ofQ γ1(l),0. In particular, we show that Cγ1(l),0
γ1(l),0

→ λ1 as l → ∞. Therefore,
consider the sequence of perturbed processes


Q̄ γ1(l),1−γ1(l)


l∈N. It follows from Theorem 11 that

C̄γ1(l),1−γ1(l)
γ1(l),0

− δ
γ1(l),1−γ1(l)
γ1(l),0

≤ Cγ1(l),0
γ1(l),0

≤ C̄γ1(l),1−γ1(l)
γ1(l),0

+ δ
γ1(l),1−γ1(l)
γ1(l),0

, (50)

where δ
γ1(l),1−γ1(l)
γ1(l),0

is defined in Theorem 11. It is readily verified that

σ1 (γ1(l)) −→ 1, and σ2 (γ1(l)) −→ ρ2, (51)
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as l → ∞. Therefore, δγ1(l),1−γ1(l)
γ1(l),0

vanishes as l → ∞. From (50) and (51) it follows that

C∗
= lim

l→∞

C̄γ1(l),1−γ1(l)
γ1(l),0

= γ ∗

1 µ(1 − ρ2) + µρ2 = λ1. (52)

Next, we need to consider the cases λ1 < λ2 and λ1 = λ2. In similar fashion as the first case it follows for λ1 < λ2 that

C∗
= lim

γ2→γ ∗
2

C0,γ2
0,γ2

= lim
γ2→γ ∗

2

C̄1−γ2,γ2
0,γ2

= λ2 (53)

and for λ1 = λ2 = λ that

C∗
= lim

γ→0
Cγ ,γ

γ ,γ = lim
γ→0

C̄γ ,1−γ
γ ,γ = λ. � (54)

Since we have the signs as well as a bound on the value of the bias terms we can employ both the comparison result
of Theorem 3 and the error bound result from Theorem 2. Some care needs to be taken in choosing the value of α for the
perturbed model Q̄ α,1−α . We will see that by restricting α to the range [min{γ1, 1 − γ2},max{γ1, 1 − γ2}], it is possible to
employ Theorem 3.

Theorem 11. Let min{γ1, 1 − γ2} ≤ α̃ ≤ max{γ1, 1 − γ2}. Then

C̄ α̃,1−α̃
γ1,γ2

− δα̃,1−α̃
γ1,γ2

1{γ1+γ2≥1} ≤ Cγ1,γ2
γ1,γ2

≤ C̄ α̃,1−α̃
γ1,γ2

+ δα̃,1−α̃
γ1,γ2

1{γ1+γ2≤1}, (55)

where

C̄ α̃,1−α̃
γ1,γ2

= γ1µσ1(α̃)

1 − σ2(α̃)


+ γ2µ


1 − σ1(α̃)


σ2(α̃) + µσ1(α̃)σ2(α̃), (56)

δα̃,1−α̃
γ1,γ2

= |α̃ − γ1|µσ1(α̃)

1 − σ2(α̃)


+ |1 − α̃ − γ2|µ


1 − σ1(α̃)


σ2(α̃). (57)

Proof. The expected energy consumption of Q γ1,γ2 will be bounded in terms of

C̄ α̃,1−α̃
γ1,γ2

= Eα̃,1−α̃

cγ1,γ2(N,M)


, (58)

the value of which can be easily computed based on the stationary distribution of Q̄ α̃,1−α̃ given in Theorem 5.
If γ1 + γ2 ≤ 1 then γ1 − α̃ ≤ 0 and γ2 − (1 − α̃) ≤ 0. Therefore, by Lemma 2 and Theorem 3, Cγ1,γ2

γ1,γ2 ≥ C̄ α̃,1−α̃
γ1,γ2

. If, on the
other hand, γ1 + γ2 ≥ 1, then γ1 − α̃ ≥ 0 and γ2 − (1 − α̃) ≥ 0, and it follows that Cγ1,γ2

γ1,γ2 ≤ C̄ α̃,1−α̃
γ1,γ2

.
It remains to show that

C̄ α̃,1−α̃
γ1,γ2

− δα̃,1−α̃
γ1,γ2

≤ Cγ1,γ2
γ1,γ2

≤ C̄ α̃,1−α̃
γ1,γ2

+ δα̃,1−α̃
γ1,γ2

. (59)

We will use Theorem 2 with c̄ = cγ1,γ2 and hence are required to find a function ξ : N2
0 → [0, ∞) that satisfies

i,j


qγ1,γ2
n,m (i, j) − q̄α̃,1−α̃

n,m (i, j)


· [C(k, n + i,m + j) − C(k, n,m)]

 ≤ ξ(n,m) (60)

and 
n,m

π̄(n,m)ξ(n,m) = δα̃,1−α̃
γ1,γ2

. (61)

From Lemma 2 and the definitions of Q γ1,γ2 and Q̄ α̃,1−α̃ it follows that

ξ(n,m) =


|γ1 − α̃|, if n > 0,m = 0,
|γ2 − (1 − α̃)|, if n = 0,m > 0,
0, otherwise

(62)

satisfies (60). A simple computation, using the product-form distribution π̄(α̃), shows that (61) is also satisfied. �

Remark 7. We have limited α̃ to the interval [min{γ1, 1 − γ2},max{γ1, 1 − γ2}], making sure that Theorem 3 can be used.
Obviously, α̃ also needs to satisfy 0 ≤ α̃ ≤ 1 and γ ∗

1 < α̃ < 1 − γ ∗

2 . It is readily verified that there always exists an α̃ that
satisfies all constraints, i.e., Theorem 11 provides upper and lower bounds for all values of the process parameters.
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Fig. 2. Performance of a symmetric system Q γ ,γ under low load (µ = 1, λ1 = λ2 = 0.2, γ1 = γ2 = γ ). Depicted are the analytical lower (dotted lines)
and upper bounds (dashed lines), the simulation results (solid lines), and the performance of the corresponding uncoded system (dashed–dotted lines).

Fig. 3. Performance of a symmetric system Q γ ,γ under high load (µ = 1, λ1 = λ2 = 0.8, γ1 = γ2 = γ ). Depicted are the analytical lower (dotted lines)
and upper bounds (dashed lines), and simulation result (solid lines).

Remark 8. Outside the interval [min{γ1, 1− γ2},max{γ1, 1− γ2}] there are values of α̂ that still satisfy γ ∗

1 < α̂ < 1− γ ∗

2 .
For these values of α̂, Theorem 3 cannot be used, but Theorem 2 is still valid. This would lead to bounds of the form

C̄ α̂,1−α̂
γ1,γ2

− δα̂,1−α̂
γ1,γ2

≤ Cγ1,γ2
γ1,γ2

≤ C̄ α̂,1−α̂
γ1,γ2

+ δα̂,1−α̂
γ1,γ2

. (63)

For clarity of exposition bounds of this type have been omitted in the current work.

Remark 9. The bounds given in Theorem 11 depend on α̃. In practice one will want to use the α̃ that provides the tightest
bound. By distinguishing between γ1 + γ2 ≤ 1 and γ1 + γ2 ≥ 1 as well as lower and upper bounds, we obtain optimization
problems that can be readily solved. For the upper bounds in the case that γ1 + γ2 ≤ 1 we need to find, for instance,

min

C̄ α̃,1−α̃

γ1,γ2
+ δα̃,1−α̃

γ1,γ2
: γ1 ≤ α̃ ≤ 1 − γ2


. (64)

This corresponds to finding the minimum of the function

γ1µσ1(α̃)

1 − σ2(α̃)


+ γ2µ


1 − σ1(α̃)


σ2(α̃) + µσ1(α̃)σ2(α̃)

+ (α̃ − γ1)µσ1(α̃)

1 − σ2(α̃)


+ (1 − α̃ − γ2)µ


1 − σ1(α̃)


σ2(α̃), (65)

in the interval γ1 ≤ α̃ ≤ 1 − γ2, which is tedious, but simple calculus.

6. Numerical examples

Weprovide some examples of application of Theorems 8 and 11 for specific parameter values. In addition to the values of
the analytical boundswe provide numerical results obtained through simulation. The simulation results have been obtained
within 99% confidence intervals. These confidence intervals are depicted in all figures, but they are sometimes so small that
they are not visible. Throughout this section we assume µ = 1. Remember that the performance of the uncoded system is
given in (8) and (9).

First we consider a symmetric system with λ1 = λ2 = λ and γ1 = γ2 = γ . We fix λ and consider the performance of
Q γ ,γ as a function of γ . We consider Q γ ,γ under two scenario’s. The first scenario is that of a relatively low load of λ = 0.2,
the results of which are depicted in Fig. 2. In addition to the analytical bounds and the simulation result, we provide the
performance of the uncoded system. It is interesting to note that the delay in the coded system is only smaller than that of
the uncoded system for large values of γ . For these values of γ the energy savings are significantly smaller than the 50%
that are theoretically possible. The second scenario that we consider for Q γ ,γ is that of a relatively high load of λ = 0.8. The
results of which are depicted in Fig. 3. Note, that for λ = 0.8, the uncoded system is not stable.
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Fig. 4. Performance of an asymmetric system (µ = 1, λ1 = 0.2, λ2 = 0.7, γ2 = 0.8). Depicted are the analytical lower (dotted line) and upper bounds
(dashed line), and the performance in an uncoded system (dashed–dotted line).

Fig. 5. Performance of an asymmetric system (µ = 1, λ1 = 0.7, λ2 = 0.2, γ2 = 0). The upper and lower bounds on the energy consumption coincide
and are depicted in a solid line. The lower and upper bounds on the delay are depicted in a dotted and a dashed line, respectively. The simulation result of
the delay nearly coincides with the upper bound, hence only the confidence intervals are depicted. The performance of the uncoded system is depicted in
dashed–dotted lines.

Next, we consider a system in which λ1 < λ2. In particular, we consider λ1 = 0.2, λ2 = 0.7 and γ2 = 0.8, and analyze
the influence of γ1. In Fig. 4 we give the analytical performance bounds of Q γ1,0.8 and the performance of the uncoded
system. Since, the upper and lower bounds nearly coincide, we have omitted the simulation results. It can be observed that
the coded system is performing significantly better, in terms of energy consumption as well as delay.

Finally, we consider a system in which λ1 > λ2. In particular, we consider λ1 = 0.7, λ2 = 0.2 and γ2 = 0, and analyze
the influence of γ1. In Fig. 5 we give the analytical performance bounds of Q γ1,0 and the performance of the uncoded system.

7. Discussion

We have provided a queueing analysis of a two-way relay in which network coding is employed. We have compared
the energy consumption and the delay in the relay with that of a relay in which network coding is not used by deriving
analytical upper and lower bounds on the performance of the coded system. It is shown that different operating policies can
be used to tradeoff energy consumption against delay. Exact results have been obtained on the minimum possible energy
consumption and the minimum possible delay.

The queueing model that we have studied in this work has similar properties as a queueing network with positive and
negative customers. As potential future work it is of interest to consider generalizations to other network configurations
with more relays and more connections. In that case it might be necessary to consider generalizations of networks with
positive and negative customers, see, for instance, [23,33–36].
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