294 research outputs found

    Modelling- and Simulation-Based Design of Multi-tier Systems

    Get PDF
    This paper introduces a domain-specific language for modelling andsimulation-based design of multi-tier systems.  Multi-tier systems are complexand very few general models have been developed. Rather, models are alwaysdedicated to a specific architecture. Our approach allows for rapidexperimentation with different multi-tier alternatives. Not only parameters,but also structure can be drastically varied.  Using graph transformation,multi-tier systems models are translated into Queueing Petri Nets (QPNs) in asystematic way for analysis with the SimQPN simulator.  We describe QPN, ourmulti-tier architecture visual language, as well as the transformation between them.  A case study demonstrates the power of the approach for design-space exploration

    Modelling- and Simulation-Based Design of Multi-tier Systems

    Get PDF
    This paper introduces a domain-specific language for modelling andsimulation-based design of multi-tier systems.  Multi-tier systems are complexand very few general models have been developed. Rather, models are alwaysdedicated to a specific architecture. Our approach allows for rapidexperimentation with different multi-tier alternatives. Not only parameters,but also structure can be drastically varied.  Using graph transformation,multi-tier systems models are translated into Queueing Petri Nets (QPNs) in asystematic way for analysis with the SimQPN simulator.  We describe QPN, ourmulti-tier architecture visual language, as well as the transformation between them.  A case study demonstrates the power of the approach for design-space exploration

    On the Use of Queueing Petri Nets for Modeling and Performance Analysis of Distributed Systems

    Get PDF
    Predictive performance models are used increasingly throughout the phases of the software engineering lifecycle of distributed systems. However, as systems grow in size and complex-ity, building models that accurately capture the different aspects of their behavior becomes a more and more challenging task. The challenge stems from the limited model expressivenes

    Abridged Petri Nets

    Full text link
    A new graphical framework, Abridged Petri Nets (APNs) is introduced for bottom-up modeling of complex stochastic systems. APNs are similar to Stochastic Petri Nets (SPNs) in as much as they both rely on component-based representation of system state space, in contrast to Markov chains that explicitly model the states of an entire system. In both frameworks, so-called tokens (denoted as small circles) represent individual entities comprising the system; however, SPN graphs contain two distinct types of nodes (called places and transitions) with transitions serving the purpose of routing tokens among places. As a result, a pair of place nodes in SPNs can be linked to each other only via a transient stop, a transition node. In contrast, APN graphs link place nodes directly by arcs (transitions), similar to state space diagrams for Markov chains, and separate transition nodes are not needed. Tokens in APN are distinct and have labels that can assume both discrete values ("colors") and continuous values ("ages"), both of which can change during simulation. Component interactions are modeled in APNs using triggers, which are either inhibitors or enablers (the inhibitors' opposites). Hierarchical construction of APNs rely on using stacks (layers) of submodels with automatically matching color policies. As a result, APNs provide at least the same modeling power as SPNs, but, as demonstrated by means of several examples, the resulting models are often more compact and transparent, therefore facilitating more efficient performance evaluation of complex systems.Comment: 17 figure

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    Response Time Analysis of Distributed Web Systems Using QPNs

    Get PDF

    Business process modeling and simulation

    Get PDF
    The textbook provides the essentials of the Business Process (BP) Modeling and Simulation (M&S) from the verbal BP description to the formulation of the mathematical scheme of the model and the simulation program. Both the analytical modeling and the simulation approaches to BP M&S are considered. Special attention is given to the theoretical and practical aspects of the BP M&S. The text covers the following topics: fundamentals of the BP M&S, conceptual modeling using IDEF3 standard, cost metrics and the activity based costing, analytical modeling (queuing networks, linear and dynamic programming), simulation with GPSS, timed Petri Nets, and Crystal Ball toolkits. Case studies include BP simulations with BPwin and GPSS. The intended readers are senior graduate students and junior postgraduate students of computer science and industrial management
    corecore