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A performance model is used for studying distributed Web systems. Performance evaluation is done by obtaining load test
measurements. Queueing Petri Nets formalism supports modeling and performance analysis of distributed World Wide Web
environments. The proposed distributed Web systems modeling and design methodology have been applied in the evaluation of
several system architectures under different external loads. Furthermore, performance analysis is done to determine the system

response time.

1. Introduction

Distributed Web Systems (DWS) development assumes that
the systems consist of a set of distributed nodes. These
systems provide up-to-date data within the set time frames.
Groups of nodes (clusters) are organized in layers conducting
predefined services. This approach makes it possible to check
the response time and easily scale the system. An example of a
DWS is a stock trading system [1] (as one class of Internet
systems). In this system, it may be a requirement for certain
positions to be bought or sold when market events occur. A
certain amount of system latency may be acceptable, but the
event must still be reacted to within a deterministic period
of time. If a lot of system responses exceed the time limit,
the system will not be often used by users. The response time
specified as an average value is normally dictated by business
not by the environment.

Modeling and design of DWS are developed in two ways
(Figure 1). On one hand, formal models which can be used
to analyze performance parameters are proposed [2-7]. To
describe such systems, formal methods like Queuing Nets
and Petri Nets are used. Sometimes elements of the control
theory are used to manage the movement of packages in web
servers [1]. Experiments connected with simulation models
are the second way especially when there are many nodes

[1, 8, 9]. Applying experiments and models greatly influences
the validity of the systems being developed. The convergence
of simulation results with the real systems results confirms
the correctness of the modeling methods.

Our earlier works [1, 10] are based on Queuing Nets and
Timed Coloured Petri Nets. A distributed Internet system
model, initially described in compliance with Queuing Net
rules, was mapped onto Timed Coloured Petri Net structure
by means of queueing system templates. We have used two
types of formal models that have been exploited in the
industry. We created some separate system models using
Queuing Nets and Petri Nets, which allow the performance
analysis. The final Timed Coloured Petri Net based model
can be executed and used for modeled system performance
prediction.

In our solution we propose alternative Queueing Petri
Net models [11]. The models have been used as a background
for developing a programming tool which is able to map
timed behavior of Queueing Nets by means of simulation. We
developed [12, 13] our individual method of modeling and
analysis of DWS. The well-known software toolkits such as
Queueing Petri net Modeling Environment (QPME) [3] can
be naturally used for our models simulation and performance
analysis. We develop QPN models of DWS that allow the
performance evaluation.
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FIGURE 1: Performance modeling possibilities.

The remaining work is organized as follows. Section 2
describes QPN. Section 3 presents DWS architecture and
describes the modeling approach. Section 4 presents perfor-
mance analysis results. The final section contains concluding
remarks.

2. Queueing Petri Nets

In our solution, we propose a popular formal method—
Queueing Petri Net [11]. This method is based on Queueing
Nets and Petri Nets. Queuing Theory deals with modeling
and optimizing different types of service units. Queueing
Net usually consists of a set of connected queuing systems.
The various queue systems represent computer components.
Queueing Nets (QN) are very popular for the quantitative
analysis [14]. QNs have a queue, scheduling discipline and
are suitable for modeling competition of equipment. To
analyze any queue system it is necessary to determine: arrival
process, service distribution, service discipline, and waiting
room (scheduling strategies). Petri Nets (PN) are used to
specify and analyze the concurrence in systems. The system
dynamics is described by the rules of tokens flow. The net
scheme can be subjected to a formal analysis in order to
carry out a qualitative analysis, based on determining its
logical validity. PN have tokens representing the tasks and
are suitable for modeling software. PN are referred to as
the connection between the engineering description and the
theoretical approach. Petri Nets are well-known models used
to describe and analyze service units. PN cannot be used for
a quantitative analysis due to lack of time aspects. The studies
focus on incoming load measuring, for example, measure
of the response time or presentation of an overall modeling
plan. QN—quantitative analysis—has a queue and scheduling
discipline and are suitable for modeling competition of equip-
ment. PN—qualitative analysis—have tokens representing
the tasks and are suitable for modeling software.

Queueing Petri Net (QPN) formalism is a very popular
formal method of functional and performance modeling
(performance analysis). These nets provide sufficient power
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to express modeling and analyzing of complex online sys-
tems. The choice of QPN was caused by a possibility of
obtaining different character information. The main idea of
QPN is to add queueing and timing aspects to the net places.
QPN have the advantages of QN (e.g., evaluation of the
system performance and the network efficiency) and PN (e.g.,
logical assessment of the system correctness). QN consists
of a collection of service stations and clients. The service
stations (queues) represent system resources while the clients
represent users or transactions. A service station is composed
of one or more servers and a waiting area (Figure 2). Tokens
enter the queueing place through the firing of input transi-
tions, as in other PN. When a request arrives at a service
station, it is immediately serviced if a free server is available.
Otherwise, the request has to wait in the waiting area. Dif-
ferent scheduling strategies can be used to serve the requests
waiting in the waiting area. Places (QPN) are of two types:
ordinary and queued. A queueing place (resource or state)
is composed of a queue (service station) and a depository
for tokens that completed their service at a queue (Figure 2).
After being served by the service station, (coloured) tokens
are placed onto a depository. Input transitions are fired and
then tokens are inserted into a queueing place according
to the queue’s scheduling strategy. Queueing places can
have variable scheduling strategies and service distributions
(timed queueing places). Tokens in the queue are not available
for output transitions while tokens in the depository are avail-
able to all output transitions of the queued place. Immediate
queueing places impose a scheduling discipline on arriving
tokens without a delay [11]. The last place on Figure 2 is called
a subnet place. Hierarchical QPN (HQPN) has a dedicated
input and output place, which are ordinary places of a PN.
Tokens being inserted into a subnet place after a transition fir-
ing are added to the input place of the corresponding HQPN
subnet. The semantics of the output place of a subnet place is
similar to the semantics of the depository of a queueing place.
Every subnet contains actual population place used to keep
track of the total number of tokens fired into the subnet place.

QPN is a tuple (2), where CPN is Coloured Petri Net (1)
(11, 15]:

CPN = (P, T,C,I, M), 1)
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where

, p;} is a finite and nonempty set of

(i) P = {p,py---
places,
() T = {tl,tz,...,tj} is a finite and nonempty set of
transitions,
(iii) PN T = @,
(iv) C is a colour function defined from P U T into finite
and nonempty sets (specify the types of tokens that

can reside in the place and allow transitions to fire in
different modes),

(v) I(p,t) are the backward and forward incidence func-
tions defined on P x T, such that I(p,t) € [C(t) —
C(p)], V(p,t) € P x T (specify the interconnections
between places and transitions),

(vi) M(p) is a initial marking defined on P such that
M(p) € C(p), Vp € P (specify how many tokens are
contained in each place):

QPN = (CPN,Q, W), (2)

where

HQ= (Qsza (q1> e Q|p|)), where

(a) Q; < Pisaset of timed queueing places,

(b) Q, € Pisaset of immediate queueing places,

() QNQ, =g,

(d) (g4>--->qpp) is an array with description of
places (if p; is a queueing place, g; denotes the
description of a queue with all colors of C(p;)
into consideration or if p; is the ordinary place
(p;) equals null).

(i) W = (W}, W,, (wy, ..., wyp))), where

(a) W, € T is a set of timed transitions,

(b) W, € T is a set of immediate transitions,

OWNW,=a3,W,UW, =T,

(d) (wy,...,wp) is an array (entry w; € [C(tj) -
R] such that Ve € C(t;) : w;(c) € R") of

(1) rate of a negative exponential distribution
specifying the firing delay due to colour, if
t i€ Wi,

(2) firing weight specifying the relative firing
frequency due to colour, if t; € W,.

QPN have been recently applied in the performance
evaluation of DWS, databases [16] and grid environments [17]
because they are more expressive to represent simultaneous
resource possession and blocking. Here, QPN models are
used to predict DWS performance.

3. Distributed Web System

Among many Internet systems, we can indicate DWS.

3.1. Distributed Web System Architecture. Distributed Inter-
net system architecture is made up of several layers:

(i) Layer 1 (Web servers—Tier 1) presents information
(system offer) for clients in the web pages form and
contains clusters.

(ii) Layer 2 (Application servers—Tier 2) manages trans-
actions (clients requests) and provides the clustering
functionality that allows load balancing.

(iii) Layer 3 (Database servers—Tier 3) controls the trans-
actions, as a single element of this layer or multiple
servers with database replication.

(iv) Layer 4 (Data nodes—Tier 4) is the data storage
system.

In our approach the presented architecture has been simpli-
fied to two layers:

(i) Front-End (FE) layer is based on the presentation and
processing mechanisms (Tiers 1 and 2). These two
functions are realized by software.

(ii) Back-End (BE) layer contains one or more—in case
of replication [1] —several databases. It consists of two
presented Internet system layers (Tiers 3 and 4). This
layer keeps the system data.

An architecture composed of these layers is used for e-
busines systems. The presented double-layer system architec-
ture realizes Internet system functions. These simplifications
have no influence on the modeling process, which has been
shown repeatedly for example, [3]. Proposed in the paper
approach may be treated as an extension and continuation of
solutions presented in [1]. Clustering mechanism was used in
both layers. We used 1, 3, 6 and 9 nodes.

3.2. Client of Distributed Web System. An access to the system
is realized through transactions. Activities related to the
requests processing are as follows:

(i) Searching the Internet and sending a request by the
Internet client.

(ii) Sending information to the Internet client or commu-
nicating with the application server by the presenta-
tion server.

(iii) Sending a request to the database by the application
server.

(iv) Carrying out a transaction on the stored data, and
returning results by the database server.

(v) Including results in appropriate places on a web page
by the application server after receiving data.

(vi) Browsing web pages with results by the client using a
web browser.

The characteristic feature of many DWS is a large number of
clients using the Internet services (e.g., stock trading system)
at the same time. DWS clients have different response time
requirements. In case of the described systems class, clients
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model.

are often focused on one event related to the same system
offer. Based on these futures we used a stock trading system
as a benchmark with two-layered architecture. In this paper,
we consider one class of Internet systems and one class of
Internet clients.

3.3. Modeling of Distributed Web System. We have many
modeling methodologies. We can indicate some approaches
to design like

(i) educated guess,
(ii) load testing,

(iii) performance modeling [3].

From many performance engineering models (workload,
performance, availability, reliability, and cost) we have cho-
sen and use the performance model (Figure 3). Perfor-
mance models provide some recommendations to realize the
required performance level.

At this stage of our research it has been decided that
simulation will be the main mechanism used to do the
analysis of the constructed models because our architecture is
too large for analytical solutions (Figure 1). In our simulations
we applied the performance analysis.

Typically, DWS are composed of layers where each layer
consists of a set of servers—a server cluster. The layers are
dedicated to adequate tasks and exchange requests between
each other. To explain our approach to DWS modeling a
typical structure will be modeled and simulated. The first
layer (FE) is responsible for presentation and processing
of client requests. The nodes of this layer are modeled by
Processor Sharing (PS) (PS—requests are assumed to be
served simultaneously with the server speed being equally
divided among them (with infinitesimally small time slices)—
it is used for modeling CPUs.) queues. The next layer (BE)
implements system data handling. The nodes of this layer
are modeled by using the First In First Out (FIFO) queue.
Requests are sent to the system and then can be processed in
both layers. The successfully processed requests are send back
to the client. Client is modeled by Infinite Server (IS) queue.

Consequently, an executable (in a simulation sense) QPN
model is obtained. Tokens generated by the arrival process
are transferred in sequence by models of FE layer and by BE
layer. QPN extend coloured Stochastic Petri Nets by incorpo-
rating queues and scheduling strategies into places forming
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queueing places. This very powerful modeling formalism
has the synchronization capabilities of Petri Nets while also
being capable of modeling queueing behaviors. The queue
mean service time, the service time probability distribution
function, and the number of servicing units defined for each
queueing system in the model are the main parameters of
the modeled system. In the demonstrated model it has been
assumed that queues belonging to the same layer (FE and BE)
have identical parameters. QPN consists of a set of connected
queueing places. Each queueing place is described by arrival
process, waiting room, service process, and additionally
depository. We apply several queueing systems most fre-
quently used to represent properties of system components.

In the Queueing Petri net Modeling Environment soft-
ware tool, it is possible to construct QPN with queueing
systems having PS and FIFO disciplines. As it was mentioned
above, the main application of the software tool presented in
the paper is modeling and evaluation of DWS.

4. Response Time Analysis
We have many Quality of Service parameters:

(i) performance (utilization, throughput, and response
time),

(ii) availability,
(iii) reliability.

Monitoring of the above mentioned parameters helps to
determine the system behavior. It allows collecting selected
elements of the net state at the moment of an occurrence of
certain events during the simulation. It has been mentioned
above that in each of the model layers, response time will be
monitored.

In these studies the performance is measured in terms of
mean response time of business transactions. Parameters that
determine the response time are

(i) workload intensity and hardware and software
parameters,

(ii) residence time and service demand.

Response time (3) is equal a sum of residence times, where i
is the number of places:

k=1
R=Z%. (3)

Residence time (4) is equal to a sum of queueing time and
service demand:

R =Q+Dy, (4)

o k=1 . .

where queuing time is Q; = ) g, and service demand is
=1 . . . .

Dy = Zf‘ dy.. Average service time in a particular resource

does not contain the time of waiting for the resource. Service

demand also does not depend on the load.
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TaBLE 1: Example of mean response time [ms] for 15 requests per second workload.

Buy Quote Sell Quote Update Profile Show Quotes Get Home Get Portfolio Show Account
100 clients 158.329 168.806 62.192 62.595 43.929 95.894 38.257
200 clients 197.483 208.062 91.061 91.363 83.432 117.602 78.634
300 clients 197142 209.295 91.639 91.682 83.165 114.57 78.446
4.1. Measured Parameters. Simulation parameters are based TaBLE 2: Queueing systems definitions.
on a benchmark with realistic workload. We present the - —
results of our earlier experimental analysis in [12]. The goal Queue place Queucing system Description
was to check—among others—the service demand parameter Clients -/ M/1/1S° Clients
for FE and BE nodes. The application servers, considered FE_CPUm" -/M/1/PS? FE nodes
as a FE layer, are responsible for the method execution. All BE_I/On® ~/M/1/FIFO*® BE nodes
sensitive data is stored in a database system (BE layer). When 2. number of FE nodes.
a client has to retrieve or update data, the application server ®y: number of BE nodes.
makes the corresponding calls to the database system. DWS ZIS service discipline.
are usually built on middleware platforms such as J2EE. We ePS service discipline.
used the DayTrader [18] performance benchmark which is FIFO service discipline.
available as an open source application. Overall, the Day-
Trader application is primarily used for performance research
on a wide range of software components and platforms. Clilats

DayTrader is a suite of workloads that allows performance
analysis of J2EE application server. DayTrader is a benchmark
application built around the paradigm of an online stock
trading system. It drives a trade scenario that allows to
monitor the stock portfolio, inquire about stock quotes,
buy or sell stock. By client business transactions we mean
the stock-broker operations: Buy Quote, Sell Quote, Update
Profile, Show Quote, Get Home, Get Portfolio, Show Account,
and Login/Logout. Each business transaction emulates a
specific class of clients.

One of the most important requests [12], Buy Quote
(Requests class (type), which has the bigger impact on the
behavior of the system (Tablel)) is used in simulations.
Experiments [12] have shown that mean number of requests
per second for a FE layer is about 1400. Respectively, the
mean measured number of requests per second for BE layer is
about 7500 requests per second. We can also see that the delay
in the requests processing is mainly caused by the waiting
time for service in one BE node, but the main problem is
the performance of the system response time. Our approach
presented in [12] predicts response time for DWS and the
relative error is lower than 15[%].

4.2. Queueing Petri Net Models. QPN models (Figure 4)
are used to predict the system response time. We use the
Queueing Petri net Modeling Environment (QPME) [15] tool.
QPME is an open-source tool for stochastic modeling and
analysis based on QPN modeling formalism used in many
works [3,5, 6,19]. Scheduling strategies, service time distribu-
tions, and number of servers for queues are shown in Table 2.
Queues are described by Kendall notation (A/B/m/K/L/N),
where A denotes the probability distribution function spec-
ifying the interarrival time of tokens (— means different
requests interarrival time), B is the probability distribution
function of a service times (M means exponential (Marko-
vian) distribution of requests service time), m is the number

ThreadsRool
ConnectionsPool
—
t FE -R\\'/BE b-BE  f5
t t ty
FIGURE 4: Main model of DWS.

of servers (1 means one server), K limits the number of
requests a queue can hold (if not specified, the default is co), L
determines the maximum number of requests that can arrive
in a queue, the size of calling source (if not set: L = 00), and
N is the scheduling strategy (if not specified, the default is
FIFO).

Model elements are presented in Figure 4. Client think
time is modeled by IS scheduling strategy (Clients place).
Servers of FE layer are modeled using the PS queuing systems
(FE_CPU places), in subnet place (Sub-FE in Figure 5(a)).
Service in all queueing places is modeled by an exponential
distribution. Service demands in layers are based on experi-
mental results [12]:

(i) dpg cpy = 0.714 (ms),
(11) dBE,I/O =0.133 (mS).

BE servers are modeled by FIFO queue (BE_I/O place),
in subnet place (Sub-BE in Figure 5(b)). Places (FE and
BE) are used to stop incoming requests when they await
application server threads and database server connections,
respectively. Application server threads and database server
connections are modeled, respectively, by ThreadsPool and
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FIGURE 5: A subnet place example: (a) FE subnet with 9 nodes and (b) BE subnet with 6 nodes.

ConnectionsPool places. The process of requests arrival to
the system is modeled by exponential distribution with the A
parameter (client think time) corresponding to the number
of clients requests per second. The initial marking for places
are

(i) number of clients (number of tokens in Clients place),

(ii) application server threads pool (number of tokens in
ThreadsPool place),

(iii) database server connections pool (number of tokens
in ConnectionsPool place).

In these models, we have three types (A colour specifies a type
of tokens that can be resided in the place) of tokens:

(i) Requests.
(ii) Application server threads.

(iii) Connections to the database.

Based on definition (2), we define the following model (5)
of DWS:

QPN = (P, T,C,I, M,Q, W), (5)

where

(i) P = {FE, BE, ThreadsPool, ConnectionsPool},
(i) T = {t), ty tsr s tsh
(iii) C (Table 3),

(iv) I(p, 1),
(v) M(p) (Table 4),
V) Q = (Q,Qy (—/M/[0O/ISyjunser nuill, =/ M1/

PSq,-pp> null, =M /1/FIFOyg,,p, g, null, null)), where

(a) Q, = {Clients, FE.CPU,,, BE_1/O,},
(b)Q, =2,

TABLE 3: Type (color) to be attached to a token.

Place/transition Color  Description
Clients, FE_.CPUm, BE_1/On, FE, re Token represents a
BE T Clients requests
ThreadsPool thr Token represents a

thread
ConnectionsPool con Token répresents a

connection

Token represents a
t req

client’s requests

TABLE 4: Initial marking.

Place Value Description

Clients 100, 200, 300, 400, 500 Number of clients
FE_CPUm — FE nodes

FE_I/On — BE nodes

ThreadsPool 30, 90, 180, 270 Number of threads
ConnectionsPool 40,120, 240,360  Number of connections
FE — Stop incoming requests
BE — Stop incoming requests

(vii) W = (W;, W,), where

(a) W] =g,

Gy W, =T,

(c) Vc e C(tj) : w]-(c) := 1 (all transition firings are
equally likely).

4.3. Simulation Results. Many simulations were performed
for various input parameters (Table 5). Total response time
is a sum of all individual response times of queues and
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TABLE 5: Parameters of simulations (one class of requests corre-
sponds with Buy Quote requests).

Element/parameter Name/value
QPME FE queues FE,CPUMZ
BE queues BE_I/On
d
Software® ThreadsPool place 30
ConnectionsPool place 40°
f
Client workload A 0.06
Clients placeg 100, 200, 300, 400, 500
Simulation time [s] 300

*m: number of FE nodes.

®42: number of BE nodes.

“Initial marking per node.

430 threads for one FE node, 90 threads for three FE nodes, 180 threads for
six FE nodes, and 270 threads for nine nodes.

€40 connections for one BE node, 120 connections for three BE nodes, 240
connections for six BE nodes, and 360 connections for nine nodes.

fClient think time equals 16,67 [ms].

8Client workload based on 15, 30, 45, 60 requests per second.

depositories in a simulation model without the client queue
response time (client think time).

We investigate the bahaviour of the system during the
increase in workload intensity. The number of clients was
increased in accordance with values (Clients place) from
6000 to 30000 requests per second.

We used some scenarios in which we have a single
requests class. The results involve the response time of the
whole system. Multiple FE (1, 3, 6, and 9) and BE (1, 3,
6, and 9) nodes are the main configuration scenario. QPN
model was used to predict the performance of the system
for the scenarios (1IFEIBE (1 node in FE layer and 1 node
in BE layer), 1IFE3BE, 1FE6BE, 1FE9BE, 3FEIBE, 3FE3BE,
3FE6BE, 3FE9BE, 6FFE1BE, 6FE3BE, 6FE6BE, 6FE9BE,
9FEIBE, 9FE3BE, 9FE6BE, and 9FE9BE) and it was developed
using QPME.

As aresult, the response time of transactions is improved
for cases with a higher number of FE and BE nodes. Increas-
ing number of nodes resulted in simultaneous increase in the
number of application server threads and connections to the
database.

Figures 6 and 7 show the mean response time for all tests.
Figure 6 shows the mean response time from the perspective
of FE layer and Figure 7 from the perspective of BE layer.
As we can see the overall response time decreased while the
number of nodes was increasing.

The response time of one FE node architecture for all
cases is the biggest. A difference in response time (Figure 6)
between FEI and FE3 is much bigger than between FE3 and
FE9 (with different number of nodes in BE layer). We can also
see the difference between system behavior for the increasing
number of clients. For example, for 500 clients we can observe
big discrepancy between FE1 and FE3 in all cases.

As we can see in Figure 7 an increasing number of nodes
does not always reduce the response time. When more nodes
are added, the analysis of their impact on other elements of
the system should be preluded.

Response time (60 requests per client)

Z 350

ms)
o O W
===
83333

Mean response time (
v
oS

FIGURE 6: Mean response time simulation results for different
number of nodes in FE (1, 3, 6, and 9) layer and in BE (1, 3, 6, and 9)
and different numbers of clients.

Response time (60 requests per client)

350
300
.5 250

Mean response time (ms)
——
==
8883

FIGURE 7: Mean response time simulation results for different
number of nodes in BE (1, 3, 6, and 9) layer and in FE (1, 3, 6, and 9)
and different numbers of clients.

In the two Figures 8 and 9, we have presented the same
results for each part separately. We presented tables, below
graphs, showing the results to clearer analysis. The overall
system response time increases with the increasing workload.
Aswe can see in Figure 8 mean response time decreases while
the number of nodes in BE layer increases. The response time
for the same number of nodes in FE layer is almost the same
(Figures 8(a) and 8(b)). We can see that for 6 and 9 nodes
in FE layer the mean response time decreases for different
number of nodes in BE layer (Figures 8(c) and 8(d)).

In the second scenario (Figure9), the changes of the
number of nodes in FE layer have a bigger impact on system
response time. In all cases with the number of clients equal
to 200, 300, and 400, we can observe linearly decreasing
response time. The response time difference in cases of 100
clients may be due to a big number of nodes in BE layer
compared to a small number of requests. Response time
difference (shortest response time) in cases of 500 clients
signalizes that 3 FE nodes (in this exampled load) is the best
solution. More number of nodes in FE layer is also good but
the benefit is not so obvious.

The basic conclusion is that it is difficult to determine
what would be the behavior of the system after adding more
nodes in layers; therefore, research and performance analysis
is necessary.
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m FE1 BE6 56.792 127.864 199.597 271.809 343.988 m FE3BE6  24.606 92.18 163.02 206.16 230.186
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FE6 BE3  16.814 51.375 116.879 186.431 257.486 FE9 BE3  22.224 36.813 80.051 143.096 211.707
m FE6 BE6 19.276 48.465 111.709 181.769 252.001 B FE9 BE6 25.513 36.262 72.724 134.141 202.108
m FE6 BE9 24.213 48.366 109.737 178.946 249.225 ® FE9 BE9 30.936 39.172 70.37 128.846 196.424
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FIGURE 8: Mean response time simulation results for different number of nodes in FE (1, 3, 6, and 9) layer and in BE (1, 3, 6, and 9) and
different numbers of clients: (a) 1 node in FE layer and 1, 3, 6, and 9 in BE layer, (b) 3 nodes in FE layer and 1, 3, 6, and 9 in BE layer, (c) 6
nodes in FE layer and 1, 3, 6, and 9 in BE layer, and (d) 9 nodes in FE layer and 1, 3, 6, and 9 in BE layer.

5. Conclusions

We cannot always add new devices to improve performance,
because the initial cost and maintenance will become too
large. Because the overall system capacity is unknown, we
propose a combination of benchmarking and modeling
solution.

It is still an open issue how to obtain an appropriate
DWS. Our earlier works propose Performance Engineering
frameworks [10] to evaluate performance during the different
phases of their life cycle. The demonstrated research results
are an attempt to apply QPN formalism to the development
of a software tool that can support DWS design. The result of
the analysis is the discovery of the DWS structure useful in
performance modeling. The idea of using QPN was proposed
previously by other authors. In the presented approach, an
alternative implementation of QPN has been proposed.

Earlier [12, 13] we set the parameters for the system exper-
imentally. We verified [12] the influence of the individual
layers on the system performance. The paper [13] focuses
on the expansion of the model by increasing the number
of elements in layers. The current model (5) has only a few
parameters, but it is fully functional and can be scaled to

larger systems. The modeling approach presented in this
paper differs from previous works because of the following:

(i) Realistic workload was not used earlier.

(ii) We showed the model of DWS with a greater number
of nodes and different values on arcs.

(iii) We applied 50 number of runs for every simulation.

(iv) We took into consideration response times of all ele-
ments (queues and depositories of QPN), especially
clients depository.

(v) Simplifying the model to a single element in a single
layer.

We develop a framework that helps to identify performance
requirements (response time parameter). The study demon-
strates the modeling power and shows how discussed models
can be used to represent the system bahaviour, also in
particular layers (Table 6). Next we shall consider analyzing
the response time characteristics for more classes of clients
(a separate token colour) to effectively model the Internet
requests from the clients.
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FIGURE 9: Mean response time simulation results for different number of nodes in BE (1, 3, 6, and 9) layer and in FE (1, 3, 6, and 9) and
different numbers of clients: (a) 1 node in BE layer and 1, 3, 6, and 9 in FE layer, (b) 3 nodes in BE layer and 1, 3, 6, and 9 in FE layer, (c) 6
nodes in BE layer and 1, 3, 6, and 9 in FE layer, and (d) 9 nodes in BE layer and 1, 3, 6, and 9 in FE layer.

TABLE 6: Example of mean response time [ms] in system layers

(FE6BE9).

100 200 300 400 500
FE 13178 37654  99.082  168.294  238.58
FE+BE 23534  48.02  109.423  178.639  248.921
System 24213 48366 109737  178.946  249.225
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