7,566 research outputs found

    Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach

    Get PDF
    Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations

    Configuration of Distributed Message Converter Systems using Performance Modeling

    Get PDF
    To find a configuration of a distributed system satisfying performance goals is a complex search problem that involves many design parameters, like hardware selection, job distribution and process configuration. Performance models are a powerful tools to analyse potential system configurations, however, their evaluation is expensive, such that only a limited number of possible configurations can be evaluated. In this paper we present a systematic method to find a satisfactory configuration with feasible effort, based on a two-step approach. First, using performance estimates a hardware configuration is determined and then the software configuration is incrementally optimized evaluating Layered Queueing Network models. We applied this method to the design of performant EDI converter systems in the financial domain, where increasing message volumes need to be handled due to the increasing importance of B2B interaction

    Coding for Fast Content Download

    Full text link
    We study the fundamental trade-off between storage and content download time. We show that the download time can be significantly reduced by dividing the content into chunks, encoding it to add redundancy and then distributing it across multiple disks. We determine the download time for two content access models - the fountain and fork-join models that involve simultaneous content access, and individual access from enqueued user requests respectively. For the fountain model we explicitly characterize the download time, while in the fork-join model we derive the upper and lower bounds. Our results show that coding reduces download time, through the diversity of distributing the data across more disks, even for the total storage used.Comment: 8 pages, 6 figures, conferenc

    Bayesian inference for queueing networks and modeling of internet services

    Get PDF
    Modern Internet services, such as those at Google, Yahoo!, and Amazon, handle billions of requests per day on clusters of thousands of computers. Because these services operate under strict performance requirements, a statistical understanding of their performance is of great practical interest. Such services are modeled by networks of queues, where each queue models one of the computers in the system. A key challenge is that the data are incomplete, because recording detailed information about every request to a heavily used system can require unacceptable overhead. In this paper we develop a Bayesian perspective on queueing models in which the arrival and departure times that are not observed are treated as latent variables. Underlying this viewpoint is the observation that a queueing model defines a deterministic transformation between the data and a set of independent variables called the service times. With this viewpoint in hand, we sample from the posterior distribution over missing data and model parameters using Markov chain Monte Carlo. We evaluate our framework on data from a benchmark Web application. We also present a simple technique for selection among nested queueing models. We are unaware of any previous work that considers inference in networks of queues in the presence of missing data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS392 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computationally Efficient Simulation of Queues: The R Package queuecomputer

    Get PDF
    Large networks of queueing systems model important real-world systems such as MapReduce clusters, web-servers, hospitals, call centers and airport passenger terminals. To model such systems accurately, we must infer queueing parameters from data. Unfortunately, for many queueing networks there is no clear way to proceed with parameter inference from data. Approximate Bayesian computation could offer a straightforward way to infer parameters for such networks if we could simulate data quickly enough. We present a computationally efficient method for simulating from a very general set of queueing networks with the R package queuecomputer. Remarkable speedups of more than 2 orders of magnitude are observed relative to the popular DES packages simmer and simpy. We replicate output from these packages to validate the package. The package is modular and integrates well with the popular R package dplyr. Complex queueing networks with tandem, parallel and fork/join topologies can easily be built with these two packages together. We show how to use this package with two examples: a call center and an airport terminal.Comment: Updated for queuecomputer_0.8.

    Cost minimization for unstable concurrent products in multi-stage production line using queueing analysis

    Get PDF
    This research and resulting contribution are results of Assumption University of Thailand. The university partially supports financially the publication.Purpose: The paper copes with the queueing theory for evaluating a muti-stage production line process with concurrent goods. The intention of this article is to evaluate the efficiency of products assembly in the production line. Design/Methodology/Approach: To elevate the efficiency of the assembly line it is required to control the performance of individual stations. The arrival process of concurrent products is piled up before flowing to each station. All experiments are based on queueing network analysis. Findings: The performance analysis for unstable concurrent sub-items in the production line is discussed. The proposed analysis is based on the improvement of the total sub-production time by lessening the queue time in each station. Practical implications: The collected data are number of workers, incoming and outgoing sub-products, throughput rate, and individual station processing time. The front loading place unpacks product items into concurrent sub-items by an operator and automatically sorts them by RFID tag or bar code identifiers. Experiments of the work based on simulation are compared and validated with results from real approximation. Originality/Value: It is an alternative improvement to increase the efficiency of the operation in each station with minimum costs.peer-reviewe

    Design of testbed and emulation tools

    Get PDF
    The research summarized was concerned with the design of testbed and emulation tools suitable to assist in projecting, with reasonable accuracy, the expected performance of highly concurrent computing systems on large, complete applications. Such testbed and emulation tools are intended for the eventual use of those exploring new concurrent system architectures and organizations, either as users or as designers of such systems. While a range of alternatives was considered, a software based set of hierarchical tools was chosen to provide maximum flexibility, to ease in moving to new computers as technology improves and to take advantage of the inherent reliability and availability of commercially available computing systems
    corecore