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BAYESIAN INFERENCE FOR QUEUEING NETWORKS AND
MODELING OF INTERNET SERVICES

BY CHARLES SUTTON AND MICHAEL I. JORDAN

University of Edinburgh and University of California

Modern Internet services, such as those at Google, Yahoo!, and Amazon,
handle billions of requests per day on clusters of thousands of computers.
Because these services operate under strict performance requirements, a sta-
tistical understanding of their performance is of great practical interest. Such
services are modeled by networks of queues, where each queue models one
of the computers in the system. A key challenge is that the data are incom-
plete, because recording detailed information about every request to a heavily
used system can require unacceptable overhead. In this paper we develop a
Bayesian perspective on queueing models in which the arrival and departure
times that are not observed are treated as latent variables. Underlying this
viewpoint is the observation that a queueing model defines a deterministic
transformation between the data and a set of independent variables called the
service times. With this viewpoint in hand, we sample from the posterior dis-
tribution over missing data and model parameters using Markov chain Monte
Carlo. We evaluate our framework on data from a benchmark Web applica-
tion. We also present a simple technique for selection among nested queueing
models. We are unaware of any previous work that considers inference in net-
works of queues in the presence of missing data.

1. Introduction. Modern Internet services, such as those at Google, Yahoo!,
and Amazon, serve large numbers of users simultaneously; for example, both eBay
and Facebook claim over 300 million users worldwide.1 To handle these demands,
large-scale Web applications are run on clusters of thousands of individual net-
worked machines, allowing large numbers of requests to be served by processing
different requests in parallel on different machines. Each individual machine also
processes multiple requests simultaneously, and a typical request involves com-
putation on many machines. Web services also operate under strict performance
requirements. It is extremely important to minimize a site’s response time—that
is, the amount of time required for a Web page to be returned in response to the
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user’s request—because even small delays, such as 100 ms, are sufficient to cause
a measurable decrease in business.2

Developers of Web applications are concerned with two types of statistical ques-
tions about performance. The first involve prediction of the response time of the
application under new conditions, for example, if ten more Web servers were to be
added, or if the number of users were to double. These extrapolation-type questions
are crucial for configuring systems and for attempting to assess the robustness of
a system to a spike in load. The second type of statistical question involves diag-
nosing the cause of observed poor performance in the system. For example, a Web
service could run slowly because one component of the system, such as a database,
is overloaded, meaning that it is receiving more requests than it can handle quickly.
Or, an alternative explanation is that the database is not overloaded, but is too slow
even at low request rates, for example, because it is configured incorrectly. It is
important to distinguish these two potential diagnoses of a performance problem,
because their remedies are different.

Both hypothetical and post hoc questions can be answered using a performance
model, which is essentially a regression of system performance, such as the re-
sponse time, onto the workload and other covariates. Perhaps the most popular
models are networks of queues [e.g., Kleinrock (1973)]. For example, in a Web
service, it is natural to model each server by a single queue, and connect the
queues using our knowledge of how requests are processed by the system. Queue-
ing networks allow analysts to incorporate two important forms of qualitative
prior knowledge: first, the structure of the queueing network can be used to cap-
ture known connectivity, and second, the queueing model inherently incorporates
the assumption that the response time explodes when the workload approaches
the system’s maximum capacity. This allows the model to answer hypothetical
extrapolation-type questions in a way that simple regression models do not.

Two inferential tasks will be of primary concern in this work. The first is in-
ference about the parameters of the queueing network. This allows answering the
hypothetical extrapolation-type questions by simulating from the network. For ex-
ample, if we wish to know how well the system will perform if the request rate
doubles, we can simply simulate from the queueing network with the inferred pa-
rameters but doubling the arrival rate. The second task is to infer for each request
to the system how much time was spent in the queue—this is called the waiting
time—and how much time was spent in processing after the request reached the
head of the queue—this is called the service time. This allows us to infer if any sys-
tem components are overloaded, because requests to those components will have
large waiting times.

2For measurements of this phenomenon at Google and Microsoft, see http://velocityconference.
blip.tv/file/2279751/. See also http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.
aspx.
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However, the inferential setup is complicated by the fact that Web services oper-
ate under strict performance requirements, so that data must be collected in a man-
ner that requires minimal overhead. Observation schemes whose overhead is trivial
for a small number of requests can cause unacceptable delay in a site that receives
millions of requests per day. For this reason, incomplete observation schemes are
common; for example, the data set might contain the total number of requests that
arrive per second, and the response time for 10% of the requests. The goal behind
such a scheme is to minimize the amount of computation and storage required to
collect the data, at the expense of increasing the complexity of the analysis.

In this paper we introduce a novel inferential framework for networks of queues
with incomplete data. The main idea is to view a network of queues as a direct
model of the arrival and departure times of each request, treating the arrival and
departure times that have not been measured as missing data. Underlying this view-
point is the observation that a queueing model defines a deterministic transforma-
tion from a set of independent variables, namely, the service times, to the arrival
and departure times, which can be observed. This deterministic transformation is
described in detail in Section 2. This perspective is general enough to handle fairly
advanced types of queueing models, including general service distributions, multi-
processor queues and processor-sharing queues [Kleinrock (1973)]. With this per-
spective in hand, the unmeasured arrival and departures can be approximately sam-
pled from their posterior distribution using Markov chain Monte Carlo (MCMC).
Once we can resample the arrival and departure times, it is straightforward to esti-
mate the parameters of the network, either in a Bayesian framework or in a maxi-
mum likelihood framework using Monte Carlo EM.

The design of posterior sampling algorithms presents technical challenges that
are specific to queueing models, mainly because the missing arrival and departure
times have complex deterministic dependencies, for example, that each arrival time
must be less than its associated departure time, and that a departure time from one
queue in the network will necessarily equal an arrival time at some other queue
in the network. We are unaware of previous work that considers missing data in
networks of queues.

2. Modeling. Many computer systems are naturally modeled as networks of
queues. Much work has been concerned with distributed systems in which the com-
putation required by a single request is shared over a large number of individual
machines. For example, Web services in particular are often designed in a “three
tier” architecture (Figure 1), in which the first tier is a presentation layer that gen-
erates the Web page containing the response, the second tier performs application-
specific logic, and the third tier handles long-term storage, often using a database.
In order to handle the high request rates that are typical of a Web service, each tier
actually consists of multiple individual machines that are equivalent in function.
When a request for a Web page arrives over the Internet, it is randomly assigned
to one of the servers in the first tier, which makes requests to the second tier as
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FIG. 1. A queueing network model of a three-tier Web service. The circles indicate servers, and the
boxes indicate queues.

necessary to generate the response. In turn, the second tier makes requests to the
third tier when data is required from long-term storage, for example, data about a
user’s friends in a social networking site, or data about Web pages that have been
downloaded by a search engine.

It is natural to model a distributed system by a network of queues, in which one
queue models each individual machine in the system. The queues are connected
to reflect our knowledge of the system structure. For example, in a Web service,
we might model the processing of a request as follows: Each request is randomly
assigned to one of the queues in the first tier, waits if necessary, is served, repeats
this process on the second and third tiers, and finally a response is returned to the
user. (In reality, the first tier may call the second tier multiple times to serve a
single request, but we ignore this issue for modeling simplicity.)

Thus, each external request to the system might involve processing at many
individual queues in the network. To keep the terminology clear, we will say that a
job is a request to one of the individual queues, and a task is the series of jobs that
are caused by a single external request to the system. For example, consider a Web
service that is modeled by the queueing network in Figure 1. A task represents the
entire process of the system serving an external request that arrives over the Web.
A typical task in this model would comprise three jobs, one for each tier of the
system.

In order to define a probabilistic model over the arrival and departure times of
each job, we need to model both (a) which queues are selected to process each job
in a task and (b) the processing that occurs at each individual queue. For (a), we
model the sequence of queues traversed by a task as a first-order Markov chain.
We call this sequence of queues the path of that task. A task completes when the
Markov chain reaches a designated final state, so that the number of jobs in each
task is potentially random.

Second, to model the processing at individual queues, we consider several dif-
ferent possibilities. In the simplest model, each individual machine can process
one job at a time, in the order that they arrive; this is called a single-processor
first-come first-served (FCFS) queue. In this model, jobs arrive at the system ac-
cording to some point process, such as a Poisson process. The interarrival times δe
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for each job e are assumed to be drawn independently from some density g. The
arrival times themselves are denoted ae. Once a job arrives, it waits in the queue
until all previous jobs have departed. The amount of time spent in the queue is
called the waiting time. Finally, once the job arrives at the head of the queue, it
spends some amount of time in processing, called the service time se, which we
assume to be drawn from some density f . The interarrival times and service times
for all jobs are mutually independent. Once the service time has elapsed, the job
leaves the system, and the next job can enter service. The departure time of job e is
denoted de, and the time that e enters service is called the commencement time ue.
Finally, we use a to represent the vector of arrival times for all jobs, and, similarly,
d represents the vector of departure times.

There is a more general way to view this model, which will be useful in treating
the more complex queueing disciplines considered later in this section. In this
view, we imagine that all of the interarrival times δe and service times se are drawn
independently at the beginning of time. Then the arrival and departure times are
computed from these variables via a deterministic transformation, which is given
by solving the system of equations

ae = δe + ae−1,
(1)

de = se + max[ae, de−1].
This transformation is one-to-one, so that observing all of the arrival and depar-
ture times is equivalent to observing the i.i.d. service and interarrival times. In the
remainder of this paper, the queueing regimes that we consider are more complex,
but still they can all be viewed in this general framework, with different types of
queues using different transformations.

The response time re of a job e is simply the total amount of time that the job
requires to be processed, including both waiting and service, that is, re = de − ae.
The waiting time we of a job is the amount of time that the job spends in the queue,
that is, the response time minus the service time, so that re = we + se. In this way,
a queueing model can be interpreted as decomposing the response time of a job
into two components: the waiting time, which models the effect of workload, and
the service time, which is independent of workload, and models the amount of
processing which is intrinsically required to service the job.

In the remainder of this section we describe three more sophisticated queue-
ing regimes from this perspective: multiprocessor first-come first-served (FCFS)
queues (Section 2.1), queues which employ random selection for service (RSS)
(Section 2.2), and processor sharing (PS) queues (Section 2.3). In all of those
sections we describe single-queue models. Finally, in Section 2.4 we place these
single-queue models within the context of a general framework for queueing net-
works.
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2.1. Multiprocessor FCFS queues. In an FCFS queue, requests are removed
from the queue in a first-come first-served (FCFS) manner. The queue is allowed
to process K requests simultaneously, so no requests need to wait in queue until
K + 1 requests arrive. This is called a K-processor FCFS queue.

As before, the interarrival times δe are distributed independently according to
some density g, and the resulting arrival times are defined as ae = ae−1 + δe for
all e. The departure times are more complex. First, the service times se ∼ f are
distributed independently of each other and the interarrival times. Then, to trans-
form the service times into departure times, observe that a job enters service when
at least one of the K processors is free, that is, when all but K − 1 of the previous
jobs have departed. So we introduce auxiliary variables pe to indicate which of the
K servers has been assigned to job e, the time bek to indicate the first time after
job e arrives that the server k would be clear, and ce to indicate the first time after
e arrives that any of the K servers are clear. Then the departure times de can be
computed by solving the system of equations

bek = max{de′ | ae′ < ae and pe′ = k}, ce = min
k∈[0,K)

bek,

(2)
pe = arg min

k∈[0,K)
bek, ue = max[ae, ce], de = se + ue.

To obtain the joint density over arrival and departure times, we require the Jacobian
of the transformation (a,d) �→ (s, δ) that maps the vector of arrival and departure
times to the i.i.d. interarrival and service times. Fortunately, the Jacobian matrix J

of this map is triangular, because any ae depends only on δ1, δ2, . . . , δe, and any de

depends on δ1, δ2, . . . , δN and s1, s2, . . . , se. So

|detJ (a,d)| =
N∏

e=1

∣∣∣∣ ∂δe

∂ae

∣∣∣∣ ·
∣∣∣∣ ∂se

∂de

∣∣∣∣ = 1,

where the jobs are indexed by e ∈ [1,N].
The joint density over arrival and departure times is therefore

p(a,d) =
N∏

e=1

g(ae − ae−1)f (de − ue).(3)

2.2. RSS queues. In an RSS queue, when the processor finishes a job, the next
job to be processed is chosen randomly from all jobs currently in queue. (RSS
stands for Random Selection for Service.) As before, interarrival and service times
are generated from f and g independently. To compute the arrival and departure
times, define γ (e) as the predecessor of job e in the departure order of the queue
and Qe as the set of jobs in queue when e departs. Both these variables and the
departure times can be computed from the interarrival and service times by the
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system of equations

ue = max
[
ae, dγ (e)

]
, Qe = {e′ | ae′ < de and de < de′ },

(4)

de = se + ue, γ −1(e) =
{ Random(Qe), if Qe �= ∅

arg min{e′|de<ae′ }
ae′, otherwise,

where Random(S) indicates an element of the set S, chosen uniformly at random.
Notice that γ (e) is always the job immediately preceding e in the departure order
of the queue.

The likelihood for this model contains two types of factors: one that arises from
the service density, and one that arises from the random selection of jobs from
the queue. For the latter purpose, let N(t) be the number of jobs in the system at
time t , so that N(ue) is the number of jobs in queue when e enters service, that is,

N(ue) = 1 + #{e′ | ae′ < ae and ue < de′ }.(5)

Then the joint density over arrivals and departures is

p(a,d) =
N∏

e=1

N(ue)
−1g(ae − ae−1)f (de − ue),(6)

where, using similar reasoning to the FCFS case, it can be shown that the Jacobian
of the map (a,d) �→ (δ, s) is 1.

2.3. Processor sharing queues. A processor sharing (PS) queue [Kleinrock
(1973)] is designed to model computer systems that handle multiple jobs simulta-
neously on a single processor via time sharing. One way to understand this queue
is to imagine the system as if it were in discrete time, with each time slice consum-
ing some time �t > 0. When a job e arrives at the queue, it samples a total service
time se ∈ �. Then, at each time slice t , all of the N(t) jobs remaining in the system
have their service times reduced by �t/N(t). Once the remaining service time of
a job drops below zero, it leaves the queue. The PS queue arises in the limit as
�t → 0. Intuitively, each job in the system at any time t instantaneously receives
1/N(t) of the system’s processing power.

Precisely, the PS queue defines a distribution over arrival and departure times as
follows. First, the interarrival times δe are distributed independently according to
g, and the service times se independently according to f . Then, the arrival times
are computed as ae = ae−1 + δe. Finally, the departure times are defined as the
solution to the system of equations

N(t) =
N∑

e=1

1{ae<t}1{t<de},

(7)

se =
∫ de

ae

1

N(t)
dt.
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These equations can be solved iteratively by alternately holding the function N(t)

fixed and solving the second equation for de, and then holding de fixed and solving
the first equation for N(t). This procedure converges because N(t) and all de can
only increase at each iteration, and both are bounded from above.

The joint density in this case is complicated by a Jacobian term, which, unlike
in FCFS and RSS queues, does not vanish. To compute the Jacobian, observe that
1/N(t) is a step function with knots whenever a job arrives or departs. For a job e,
denote the knots that occur in [ae, de] as ae = x1 < x2 < · · · < xM = de. So (7) can
be rewritten as

se =
M∑

m=2

xm − xm−1

N(xm−)
,

where we write N(xm−) to mean the number of jobs in the queue at a time in-
finitesimally before xm. Each one of the values xm is either an arrival time of
some other job, or the departure time of a job preceding de in the departure order.
So ∂si/∂dj = 0 if di < dj , and the Jacobian matrix is again triangular. Further,
x1, . . . , xm−1 is not a function of de, so ∂se/∂de = N(de−)−1. So the joint density
is

p(a,d) = ∏
e

N(de−)−1g(ae − ae−1)f (se).(8)

2.4. Networks of queues. In this section we present a model of the paths taken
by tasks through a network of queues. We also bring this model together with the
single-queue models discussed in previous sections and present a full probabilistic
model of networks of queues.

We begin by developing notation to describe the path of a task through the
system. For any job e, we denote the queue that serves the job as qe. Every job
has two predecessors: a within-queue predecessor ρ(e), which is the immediately
previous job (from some other task) to arrive at qe, and a within-task predecessor
π(e), which is the immediately previous job from the same task as e. Finally,
arrivals to the system as a whole are represented using special initial jobs, which
arrive at a designated initial queue q0 at time 0 and depart at the time that the task
enters the system. The queue q0 is always single processor FCFS. This simplifies
the notation because now the interarrival times are simply service times at the
initial queue.

With this notation, a queueing network model can be defined as follows:

1. For every task, the path of queues is distributed according to a Markov chain.
We denote the transition distribution of this Markov chain as T (q ′|q). This is a
distribution over sequences of queues, so it is a finite-state Markov chain. The
initial state of the chain is always q0. To specify T (q ′|q), we assume that the
modeler has defined a network structure based on prior knowledge, such as the
three-tier structure shown in Figure 1. This structure defines all of the possible
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successors of a queue q , that is, all the queues q ′ for which T (q ′|q) is nonzero;
once this structure is specified, we assume that T (q ′|q) is uniform over the
possible successors.

2. The arrival time for each initial job is set to zero.
3. Each service time se is distributed independently according to the service den-

sity for qe. We will denote this density as fq(s; θq), where θq are the parameters
of the service distribution. In the current work, we use exponential distributions
over the service times so that

fq(s; θq) = θq exp{−θqs},(9)

but our sampling algorithms are easily extended to general service distributions.
4. The departure times are computed by solving the system of equations that in-

cludes: (a) for every queue in the network, the equations in (2), (4), or (7), as
appropriate (the queues in the network need not all be the same type), and (b) for
all noninitial jobs, the equation dπ(e) = ae. We call this system of equations the
departure time equations.

The full set of model parameters is simply the set of parameters for all the service
distributions, that is, the full parameter vector θ = {θq | q ∈ N }, where N is the
set of all queues in the network.

Now we present the joint density more formally. The density can be derived in a
similar fashion as that for single queues. We write se(d) to denote the service time
for job e that would result from the departure times d; this is the inverse of the
transformation defined by the departure time equations. Because different queues
are allowed to use different queueing regimes, different jobs will have different
Jacobian terms, depending on their queue type. Fortunately, the Jacobian matrix in
a network of queues model is still upper triangular, as can be seen by ordering the
jobs from all queues by their departure time. This means that the joint density can
still be written as a product over jobs.

So the joint density is

p(d,q|θ) = ∏
e

T (qe|qπ(e))h(qe, se, de)f (se(d); θqe),(10)

where the function h is the queue-specific part of the likelihood:

h(qe, se, de) =
⎧⎨
⎩

1, if qe is an FCFS queue,
N(de − se), if qe is an RSS queue,
N(de−), if qe is a PS queue.

(11)

The likelihood (10) is a product over events, where for each event e there are
three terms: the first involving T arises from the paths for each task, the second
involving h is the queue-specific term, and the third involving f arises from the
service time for event e. Finally, observe that we no longer need to include terms
for the interarrival times, because of our convention concerning initial tasks.
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We will present both maximum likelihood and Bayesian approaches to estima-
tion. For the Bayesian approach, we need a prior on θ to complete the model. In
this work we use the simple improper prior p(θ) = ∏

q 1/θq , where the product
is over all queues in the network. (This choice does mean that there is a nonzero
probability in the prior and the posterior that the system is unstable; we discuss
this issue in Section 9.)

To summarize, the key insight here is to view the queueing network as a de-
terministic transformation from service times to departure times, via the departure
time equations. The distinction between service times and departure times is im-
portant statistically, because while the service times are all i.i.d., the departure
times have complex dependencies. For example, if K = 1, then the FCFS queue
imposes the assumption that the arrival order is the same as the departure order.
This assumption is relaxed in the more complex models (i.e., K > 1 or RSS), but
still some combinations of arrivals and departures are infeasible. For example, in
an RSS queue, whenever a job e arrives at a nonempty queue, at least one other
job must depart before e can enter service. In a PS queue, on the other hand, all
combinations of arrivals and departures are feasible, so long as all ae ≤ de.

REMARK. Because the distribution p(d|θ) is high-dimensional and has spe-
cial discrete structure, it is natural to consider whether it can be interpreted as a
graphical model [Lauritzen (1996)]. In fact, however, as explained in Section 3.4,
this distribution cannot directly be represented as a graphical model in a useful
way.

3. Inferential problem. In this section we describe the inferential setting in
more detail, and also explain several complications in queueing models that make
sampling from the posterior distribution more difficult than in traditional multi-
variate models.

3.1. Missing data. First we examine the nature of the observations. If the ar-
rival, departure, and path information for every job were observed, then it would be
straightforward to compute the interarrival and service times, by inverting the de-
parture time equations (Section 2.4). Once the observations have been transformed
in this way, they are independent, so inference is straightforward.

In practice, however, complete data are not always available. One reason for this
is that the performance cost of recording detailed data about every request can be
unacceptable in a system that receives millions of requests per day. Another reason
is that systems are built using hardware components and software libraries from
outside sources. The performance characteristics of these outside components may
not be fully understood, so there may also be queueing effects in the system that
are unknown to the system developers; this possibility will be discussed further in
Section 8.
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We model the data collection process abstractly as follows. Whenever a task
arrives at the system, it is chosen for logging with some probability p. For tasks
that are not chosen, which we call hidden tasks, no information is recorded. For
tasks that are chosen, which we call observed tasks, the arrival time, departure
time, and queue for every job in the task are recorded. Also, whenever a task is
observed, we record the total number of tasks, both observed and hidden, that
have entered the system. This provides additional information about the amount of
workload over time, and is easy to collect in actual systems. Formally, the data can
be described as follows. Let T be the set of tasks that are chosen to be observed;
each task A is a set of jobs e ∈ A. Let d0(A) be the departure time of the initial job
for task A. Let N0(t) be the number of tasks, both observed and hidden, that have
entered the system by time t . Then the data are O = {(N0(d0(A)), JA) | A ∈ T },
where JA = {(ae, de, qe) | e ∈ A}.

More sophisticated observation schemes are certainly possible. For example, if
the response time of the system appears to be increasing, we may wish to collect
data more often, in order to give developers more information with which to debug
the system. Or, we may use a stratified approach, in which we collect detailed
information from a random sample of all tasks, from a random sample of tasks
in the top 10th percentile of response time, and so on. We will not consider such
adaptive schemes in this work.

3.2. Inference. We consider both Bayesian and maximum likelihood ap-
proaches to inference in this work. In either case, the key difficulty is to sample
from the posterior distribution over missing data. In particular, two posterior dis-
tributions will be of interest. Recall that in a queueing model, the response time re
of a job is divided into two components as re = we + se, where the service time
se represents the processing time that is intrinsically required for the job, and the
waiting time we represents the additional delay due to workload on the system.
Then the first posterior distribution of interest is the distribution p(s|O,θ) over
the vector of service times s for all jobs, hidden and observed. This distribution
allows inference over the parameters of the service distributions for each queue.
The second posterior distribution of interest is the distribution p(w|O,θ) over the
vector of waiting times w for all jobs. This captures the fraction of the response
time for each job that was caused by workload.

Thus, our setting can be viewed as a missing data problem, in which the missing
data are the unrecorded departure times. Our goal will be to develop an MCMC
sampler for the distribution p(d|O,θ) over departure times. Once we have sam-
ples from p(d|O,θ), we can obtain samples from p(s|O,θ) and p(w|O,θ) by
inverting the departure time equations. Furthermore, once we have a sampler for
p(d|O,θ), parameter estimation is also straightforward. In a Bayesian approach,
we simply alternate the sampler for p(d|O,θ) with a Gibbs step for p(θ |d). In a
maximum likelihood approach, we use stochastic EM [Celeux and Diebolt (1985)].
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However, designing an efficient sampler for p(d|O,θ) is complex, because the
latent variables have many complex dependencies. In the next two subsections we
describe these difficulties in more detail, highlighting their effect on the algorithm
that we will eventually propose.

3.3. Difficulties in proposal functions. A natural idea is to sample from the
posterior distribution over the missing data using either an importance sampler, a
rejection sampler, or a Metropolis–Hastings algorithm. But designing a good pro-
posal is difficult for even the simplest queueing models, because the shape of the
conditional distribution varies with the arrival rate. To see this, consider two inde-
pendent single-processor FCFS queues, each with three arrivals, as shown below:

Here the horizontal axis represents time, the vertical arrows indicate when jobs
arrive at the system, and the boxes represent the intervals between when jobs enter
service and when they finish, that is, the service times. The interarrival distribution
is exponential with rate λ, and the service distribution is exponential with rate μ.

For each of these two queues, suppose that we wish to resample the arrival
time of job 2, conditioned on the rest of the system state, as we might wish to
do within a Gibbs sampler. In case 1, the queue is lightly loaded (λ 
 μ), so
the dominant component of the response time is the service time. Therefore, the
distribution a2 = d2 − Exp(μ) is an excellent proposal for an importance sampler.
(It is inexact because the shape of the distribution changes in the area a2 < d1.)
In case 2, however, this proposal would be extremely poor, because in this heavily
loaded case, the true conditional distribution is Unif[a1;a3]. A better proposal
would be flat until the previous job departs and then decays exponentially. But this
is precisely the behavior of the exact conditional distribution, so we consider that
instead.

3.4. Difficulties caused by long-range dependencies. In this section we de-
scribe another difficulty in queueing models: the unobserved arrival and departure
times have complex dependencies. Namely, modifying the departure time of one
job can force modification of service times of jobs that occur much later, if all
other arrival and departure times are kept constant. In the terminology of graph-
ical modeling [Lauritzen (1996)], this means that the Markov blanket of a single
departure can be arbitrarily large.

This can be illustrated by a simple example. Consider the two-processor FCFS
queue shown in Figure 2. Panel 1 depicts the initial state of the sampler, from which
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FIG. 2. A departure with a large Markov blanket.

we wish to resample the departure d1 to a new value d ′
1, holding all departures

constant, as we would in a Gibbs sampler, for example. Thus, as d1 changes, so
will the service times of jobs 3–6.

Three different choices for d ′
1 are illustrated in panels 2–4 of Figure 2. First,

suppose that d ′
1 falls within the range (d1, d2) (second panel). This has the effect

of shortening the service time s3 without affecting any other jobs. If instead d ′
1

falls in (d2, d4) (third panel), then both jobs 3 and 4 are affected: job 3 moves
to server B , changing its service time; and job 4 enters service immediately after
job 1 leaves. Third, if d ′

1 falls even later, in (a6, d6) (fourth panel), then both jobs 3
and 4 move to server B, changing their service times; job 5 switches processors
but is otherwise unaffected; and job 6 can start only when job 1 leaves. Finally,
notice that it is impossible for d ′

1 to occur later than d6 if all other departures are
held constant. This is because job 6 cannot depart until all but one of the earlier
jobs depart, that is, d6 ≥ min[d ′

1, d5]. So since d5 > d6, it must be that d6 ≥ d ′
1.

This phenomenon complicates the development of a sampler because of the
difficulty that it creates in computing the conditional distributions required by a
Gibbs sampler, particularly in computing their normalizing constants. In the previ-
ous example, for instance, the conditional distribution over d1 cannot in general be
computed in closed form. But numerical integration of the unnormalized density
is also difficult, because the density has singularities at the times when other jobs
arrive and depart, for example, at times d2, d4, and a6 above. Furthermore, even
without the normalizing constant, computing the density at some point d ′

1 requires
computing new values for the service times of the succeeding jobs. If the new value
d ′

1 affects many subsequent jobs, then the computational cost required to compute
the conditional density will be large.

Furthermore, this point has important consequences from a representational per-
spective. It is natural to suspect that the distribution over arrival times, depar-
ture times, and auxiliary variables could be represented as a directed graphical
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model. In fact, however, because the Markov blanket for each departure time is
unbounded, the distribution over departure times cannot be represented as a graph
in a useful way.

This may seem to present a severe difficulty, because sampling algorithms for
high-dimensional multivariate distributions rely on the Markov blankets being
small in order to achieve computational efficiency. Fortunately, even though the
Markov blankets can be large, the “expected Markov blankets” are often small,
by which we mean that these long-range effects occur only for large values of the
departure times that are unlikely in the posterior. We expect that typical values of
departure times will be smaller and will therefore have only local effects on the
queue. This situation will be sufficient to allow us to develop a computationally
efficient sampler.

Finally, note that the phenomenon in this example occurs even if the queue is
Markovian, that is, if the interarrival and service times are exponentially distrib-
uted. Such queues are called Markovian because the process that governs the num-
ber of jobs in queue is a continuous-time Markov chain. However, the sequence
of departure times (d1, d2, . . . , dn) is not in general a discrete-time Markov chain,
except in the special case in which the queue contains only one processor. This is
one reason that analysis in queueing theory often focuses on the number-in-queue
representation, but in our setting, the data contain arrival and departure times, and
it is not possible to translate directly between the two representations when the
data are incomplete.

4. Sampling. In this section we describe the details of a sampler that ad-
dresses the difficulties discussed in the previous section. We focus on the sampler
for the posterior p(d|O) over the vector d of all departure times. Once we have
samples from this distribution, we can easily obtain samples of service times and
waiting times by inverting the departure time equations, once for each of the depar-
ture samples. Furthermore, inference about the parameters can be performed in the
usual fashion using either a Gibbs step over the model parameters in a Bayesian
framework, or using Monte Carlo EM in a maximum likelihood framework. Exact
sampling from the posterior p(d|O) is infeasible even for the simplest queueing
models, so instead we sample approximately using Markov chain Monte Carlo
(MCMC).

Our sampler is an instance of a slice sampler [Damien, Wakefield and Walker
(1999); Neal (2003)]. We recall briefly the setup for slice sampling. Suppose that
we wish to sample from a distribution with density p(x), where x is real valued.
This can be accomplished by sampling uniformly from the two-dimensional region
under p, that is, the region R = {(x, u) | 0 < u < p(x)}, because this distribution
has marginal p(x). The slice sampler is essentially a coordinatewise Gibbs update
that leaves the uniform distribution on R invariant. In the simplest version, given
a current iterate (x, u), the sampler alternates between (a) “vertically” sampling
a new value u′ from the uniform distribution on (0,p(x)), and (b) “horizontally”
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sampling a new value x′ uniformly from the so-called horizontal slice, that is, the
set of points (x′, u′) where (x′, u′) ∈ R and also u′ = u. Both of these updates leave
the uniform distribution over R invariant. In practice, the horizontal slice cannot
be computed exactly, but Neal (2003) discusses several other horizontal updates in
the same spirit that are easy to compute. For multivariate x, the slice sampler can
be applied in turn to each component.

As described in the previous section, certain difficulties in queueing models
make it difficult to apply simple Gibbs or Metropolis–Hastings samplers. The slice
sampler circumvents these difficulties, because it requires only the ability to com-
pute the unnormalized conditional density, not the ability to sample from it or to
compute its normalizing constant. The following sections describe how we com-
pute the unnormalized conditional density.

4.1. Overview. In each update of the sampler, we sample a new value of the
departure time de for some job e, using a slice sampling kernel with stationary
distribution p(de|d\e), where d\e refers to the vector of all departure times but de.
Because the slice sampler only requires the density up to a constant, it is sufficient
to compute the joint p(d).

The joint density can be computed pointwise for a given d by inverting the de-
parture time equations to obtain the corresponding set of service times, and then
using (10). This equation contains a product over all N jobs. Computing this prod-
uct naively at every update of the sampler would require O(N) time, so that a full
pass through the data would require O(N2) time. This quadratic computational
cost is unacceptable for the large numbers of jobs that can be generated by a real
system. Fortunately, this cost can be circumvented using a lazy updating scheme,
in which first we generate the set of relevant jobs � that would be changed if the
new value of de were to be adopted. Then we incrementally update the factors in
the product (10) only for the relevant jobs.

Essentially, computing the unnormalized density requires that we compute the
list of jobs whose service time would be affected if a single departure time
changed. This amounts to setting de to the new value, propagating these two
changes through the departure time equations, and obtaining a new service time
se′ for all other jobs in the two queues qe and qπ−1(e).

So for each type of queue, we require two algorithms: (a) a propagation al-
gorithm that computes the modified set of service times that results from a new
value of de, and (b) a relevant job set algorithm that computes the set of jobs �

for which the associated factor in (10) needs to be updated. It is not the case in
general that � is just the set of jobs whose service times are changed by the prop-
agation algorithm; this is because of the factor h(qe, se, de) in (10). The next three
sections describe the propagation and relevant job set algorithms for FCFS queues
(Section 4.2), RSS queues (Section 4.3), and PS queues (Section 4.4).
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Algorithm 1 Update the service times for a departure change in a K-processor
FCFS queue

1: function UPDATEFORDEPARTURE(e0)
2: // Input: e0, job with changed departure
3: stabilized ← 0
4: e ← ρ−1(e0)

5: while e �= NULL and not stabilized do
6: bek ← bρ(e),k ∀k ∈ [0,K)

7: be,k(ρ(e)) ← dρ(e)

8: stabilized ← 1 if be = old value of be else 0
9: ce ← mink∈[0,K] bek

10: pe ← arg mink∈[0,K] bek

11: se ← de − max[ae, ce]
12: e ← ρ−1(e)

Algorithm 2 Update the service times for an arrival change in a K-processor FCFS
queue

1: function UPDATEFORARRIVAL(e0, aOld)
2: // Input: e0, job with changed arrival
3: // Input: aOld, old arrival of job e0
4: // Update arrival order ρ due to e0
5: aMin ← min[ae0,aOld]
6: aMax ← max[ae0,aOld]
7: E ← all jobs arriving within aMin . . . aMax
8: // First change jobs that arrive near e0
9: for all e ∈ E do

10: bek ← bρ(e),k ∀k ∈ [0,K)

11: be,k(ρ(e)) ← dρ(e)

12: ce ← mink∈[0,K] bek

13: pe ← arg mink∈[0,K] bek

14: se ← de − max[ae, ce]
15: // Second, propagate changes to later jobs
16: e ← ρ−1(LASTELEMENT(E))

17: stabilized ← 1 if be = old value of be else 0
18: if not stabilized then
19: UPDATEFORDEPARTURE(e)

4.2. FCFS queues. The propagation algorithms for the FCFS queue are given
in Algorithm 1 (for the departure times) and Algorithm 2 (for the arrival times).
These algorithms compute new values of be′k , ue′ , ce′ , pe′ , and se′ for all other jobs
e′ and processors k for all other jobs in the queue. The main idea is that any service
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Algorithm 3 Update the service times for a departure change in an RSS queue.
1: Update departure order γ for changed departure de

2: newPrev, newNext ← Jobs departing immediately before and after the time
dold
e

3: oldPrev, oldNext ← Jobs departing immediately before and after the time de

4: dMin ← min[dnewPrev, doldPrev]
5: dMax ← max[dnewNext, doldNext]
6: L ← all jobs with departures in dMin . . . dMax
7: for all e ∈ L do
8: ue ← max[ae, dγ (e)]
9: se ← de − ue

time se′ depends on its previous jobs only through the processor-clear times bρ(e′)k
of the immediately previous job ρ(e′). Furthermore, each bek can be computed
recursively as bek = dρ(e) if k = pρ(e) and bek = bρ(e),k otherwise.

A separate relevant job set algorithm is unnecessary for the FCFS queue. Be-
cause for this queue h(qe, se, de) = 1, the relevant job set is simply the set of jobs
whose service times are updated by Algorithms 1 and 2.

4.3. RSS queues. The propagation algorithm for an RSS queue is given in
Algorithm 3. This algorithm is used for departure changes. For an arrival change,
on the other hand, none of the service times for other jobs in qe need to be updated.

Two algorithmic issues are specific to RSS queues. First, the new value ae =
dπ(e) must still be feasible with respect to the constraints (4). This can be ensured
by computing the new departure order γ for qπ(e), and then verifying for all jobs in
qe and qπ(e) that γ −1(e) ∈ Qe. If this is not the case, then the potential new value
ae = dπ(e) is rejected.

Second, observe from (11) that h(qe, se, de) = N(ue)
−1. (Recall that the com-

mencement time ue = de − se is the time that e enters service.) These factors arise
from the random selection of job e to enter service, out of the N(ue) jobs that were
in queue. Intuitively, these factors are the only penalty on a job waiting in queue
for a long time; without them, the sampled waiting times would become arbitrarily
large. To compute these, we need an efficient data structure for computing N(ue),
the number of jobs in queue when the job e entered service. This is implemented
by two sorted lists for each queue: one that contains all of the queue’s arrival times,
and one that contains all of the departure times. Then we use a binary search to
compute the total number of jobs that have arrived before ue (denoted as #Ae) and
the total number of jobs that have departed before ue (denoted as #De). Then we
can compute N(ue) = #Ae − #De.

Finally, the set of relevant jobs � must include all jobs e′ whose commencement
time falls in (aold

e , anew
e ), because those jobs will have a new value of N(ue′). This

set can be computed efficiently using a data structure that indexes jobs by their
commencement time.
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Algorithm 4 Update dependent service times for an arrival or a departure change
in a PS queue.

1: function UPDATEJOBS(e,aOld,dOld)

2: // Update dependent jobs for an arrival or a departure change to the job e

3: // Input: e, job with changed arrival or departure
4: // Input: aOld,dOld, old arrival and departure times of e

5: Recompute N(t) for new arrival and departure times of e

6: � ← RELEVANTJOBS(e,aOld,dOld)

7: for all e′ ∈ � do

8: se′ ←
∫ de′

ae′

1

N(t)
dt

9: function RELEVANTJOBS(e,aOld,dOld)

10: // Compute set of jobs that are affected by change to the job e

11: // Input: e, job with changed arrival or departure
12: // Input: aOld,dOld, old arrival and departure times of e

13: a ← min[ae,aOld]
14: d ← max[de,dOld]
15: return {e′|(ae′, de′) intersects (a, d)}

4.4. PS queues. The propagation algorithm for the PS queue is given by the
function UPDATEJOBS in Algorithm 4. The same algorithm is used for arrival
and departure changes. This algorithm computes new service times directly by
solving the relevant departure time equations (7) for the service times, with the
new departure times fixed. For the PS queue, h(qe, se, de) = N(de−), so again an
efficient data structure is required to compute the step function N(t), the num-
ber of jobs in the queue at time t . The same data structure is used as in the RSS
queue.

The relevant job set algorithm for PS queues is given by the function
RELEVANTJOBS in Algorithm 4. The idea here is that when a departure time
changes from de to d ′

e, all jobs that are in the system during any portion of that
interval will have their service times affected, because of the change to N(t). So
computing the set of relevant jobs amounts to searching through a set of intervals
to find all those that intersect (de, de′). Efficient data structures are required here as
well; in our implementation, we use a variation of a treap [Cormen et al. (2001)]
designed to store intervals.

4.5. Initialization. A final issue is how the sampler is initialized. This is chal-
lenging because not all sets of arrivals and departures are feasible: the departure
time equations define a set of nonconvex constraints. In addition, the initial con-
figuration should also be suitable for mixing. For example, setting all latent inter-
arrival and service times to zero results in a feasible configuration, but one that
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makes mixing difficult. Or, if the service distribution belongs to a scale family
(such as gamma or lognormal), initializing the service times to nearly identical
values causes the initial variance to be sampled to a very small value, which is also
bad for mixing.

Initialization proceeds as follows. For each unobserved task, we sample a path
of queues from the prior distribution over paths, and service times from an ex-
ponential distribution initialized from the mean of the observed response times.
Sometimes the sampled service time will conflict with the observed arrivals and
departures. In this case we use rejection, and if no valid service time can be found,
we set the service time to zero. Finally, we run a few Gibbs steps with exponen-
tial service distributions, before switching to the actual service distributions in the
model. This prevents zero service times, which would cause zero-likelihood prob-
lems with some service distributions, such as the lognormal.

5. Experimental setup. In this section we describe the Web application
whose performance we analyze in the remainder of the paper. Cloudstone [Sobel
et al. (2008)] is an application that has been proposed as an experimental setup
for academic study of the behavior of Web 2.0 applications such as Facebook and
MySpace. The Cloudstone application was developed by a professional Web de-
veloper with the intention of reflecting common programming idioms that are used
in actual applications. For example, the version of Cloudstone that we use is imple-
mented in Ruby on Rails, a popular software library for Web applications that has
been used by several high-profile commercial applications, including Basecamp
and Twitter.

The architecture of the system follows common practice for medium-scale Web
services, and is shown in Figure 3. Incoming requests arrive first at apache,

FIG. 3. Architecture of the Cloudstone Web application (left). Figure adapted from Sobel et al.
(2008). Queueing model of Cloudstone application (right).
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a popular Web server. In this system, apache is used to serve “static content,” that
is, information that does not need to be recomputed for each user, such as images,
the help pages, and so on. If the external request asks only for static content, then
apache handles the response directly, and no processing is required by the rest of
the system. “Dynamic content,” on the other hand, comprises pages that need to be
computed separately for each user of the system, such as a user’s email inbox, or
a user’s list of contacts on a social networking site. Dynamic content changes over
time, so that if the same user makes the same request at different times, the correct
response may well be different, so the response needs to be computed afresh.

Requests for dynamic content are handled by a Web server called thin, which
is specially designed to run the Ruby on Rails library. In order to handle a large
volume of requests, multiple copies of thin are run on separate machines. The
copies of thin do not themselves store any information on individual users, so
they are equivalent in their ability to handle external requests. Requests are dis-
tributed among the thins by a piece of software called a load balancer, whose
sole purpose is to rapidly assign requests at random to one of a set of equivalent
copies of a service. Because they do not store user data, the copies of thin need
some mechanism for obtaining this data from elsewhere. This is handled by having
a database running on a separate machine, with which all of the copies of thin
communicate. In our setup, we run 10 copies of thin on 5 machines, two copies
per machine. We run the apache server, the load balancer, and the database each
on their own machine, so that the system involves 8 machines in all.

We run a series of 2663 requests to Cloudstone over 450 s, using the workload
generator included with the benchmark. A total of 7989 jobs are caused by the
2663 requests. The workload is increased steadily over the period, ranging from
1.6 requests/second at the beginning to 11.2 requests/second at the end. The ap-
plication is run on Amazon’s EC2 utility computing service. For each request, we
record which of the thins handled the request, the amount of time spent by the
Rails library, and the amount of time spent in the database. Each Cloudstone re-
quest causes many database queries; the time we record is the sum of the time for
those queries.

6. Prediction. In this section we demonstrate that networks of queues can
effectively extrapolate from the performance of the system at low workload to the
worse performance that occurs at higher workload. This prediction problem is of
practical importance because if the performance degradation can be predicted in
advance, then the system’s developers can take corrective action.

We compare the prediction error of a variety of queueing models on the Cloud-
stone data described in Section 5. To measure the extrapolation error, we estimate
model parameters during low workload—the first 100 s of the Cloudstone data—
and evaluate the models’ predictions under high workload—the final 100 s of the
data. The workload during the training regime is 0.9 requests/second, whereas the
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workload in the prediction regime is 9.8 requests/second. During the training pe-
riod, the average response time is 182 ms, while during the prediction period the
average response time is 307 ms. The goal is to predict the mean response time
over 5 second intervals during the prediction period, given the number of tasks
that arrive in the interval.

We evaluate several queueing models: (a) single-processor RSS, (b) a network
of RSS queues, (c) a single 3-processor FCFS queue, and (d) a network of PS
queues. The networks of queues use the structure shown in Figure 3. In all cases,
the service distributions are exponential. For the single-queue models, the data
consists of the arrival and departure of each task from the system as a whole. For
the network models, the data consists of all arrivals and departures to the thins
and the database servers. As baselines, we consider several regression models:
(a) a linear regression of mean response time onto workload, (b) a regression that
includes linear and quadratic terms, and (c) a “power law” model, that is, a linear
regression of log response time onto log workload. In all cases, the data contains
information about all tasks in the training period, that is, there is no missing data,
so parameter estimation is done by simple maximum likelihood.

The prediction error for all models is shown in Table 1. The best queueing model
extrapolates markedly better than the best regression model, with a 63% reduc-
tion in error. Interestingly, different queueing models extrapolate very differently,
primarily because they make different assumptions about the system’s capacity.
This point is especially important because previous work on statistical inference in
queueing models has considered only the simplest types of queueing disciplines,
such as 1-processor FCFS. These results show that the more complex models are
necessary for real systems.

A second difference between the regression models and the queueing model
is in the types of errors they make. When the regression models perform poorly,
visual inspection suggests that noise in the data has caused the model to oscillate

TABLE 1
Extrapolation error of performance models of Cloudstone. We report root

mean squared error on the prediction of the response time under high
workload, when training was performed under low workload

RMSE (ms)

Linear regression 258
Quadratic regression 250
Power law regression 194

Single queue 1-processor RSS 1340
Network 1-processor RSS 168
Single queue 3-processor FCFS 71.7
Network PS 234
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wildly outside the training data (e.g., to make negative predictions). When the
queueing models perform poorly, it is typically because the model underestimates
the capacity of the system, so that the predicted response time explodes at a lower
workload than the actual response time.

7. Diagnosis. In this section we demonstrate that our sampler can effectively
reconstruct the missing arrival and departure data. The task is to determine which
component of Cloudstone (thin or the database) contributes most to the system’s
total response time, and how much of the response time of that component is due
to workload. Although we measure directly how much time is spent by Rails and
by the database, the measurements do not indicate how much of that time is due to
intrinsic processing and how much is due to workload. This distinction is important
in practice: If system response time is due to workload, then we expect adding
more servers to help, but not if it is due to intrinsic processing. Furthermore, we
wish to log departure times from as few tasks as possible, to minimize the logging
overhead on the thins.

More specifically, our goal will be to estimate s, the service times for all jobs,
given an incomplete sample of arrivals and departures. The model parameters are
unknown, so those must be estimated as well. The data are collected using the
observation scheme described in Section 3.1. We compare the estimates of s when
information from 25%, 50% and 100% of the tasks is used in the analysis.

We model Cloudstone by a network of PS queues (Figure 3): one for each thin
(10 queues in all) and one for the database. The delay caused by apache, by the
load balancer, and the internal network connection is minimal, so we do not model
it. The service distributions are exponential. Parameter estimation is performed in
a maximum likelihood framework using stochastic EM, in which the missing data
are imputed using the sampler described in Section 4.

Figure 4 displays the proportion of time per-tier spent in processing and in
queue, as estimated using the slice sampler from 25%, 50% and 100% of the full

FIG. 4. Reconstruction of the percentage of request time spent in each tier, from 25% tasks observed
(left), 50% tasks observed (center), and all tasks observed (right). The x-axis is the time in seconds
that the task entered the system, and the y-axis is the estimated service and waiting time.
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TABLE 2
Error at determining service times. The error measure shown is the root mean

squared error on the predicting of service times in the full data. The small numbers
indicate the standard deviation over ten repetitions with different observed jobs

RMSE (ms)

25% 50%

Wait = 0 62.3

Linear regression 80.4 ± 1.0 80.2 ± 0.8
Network of queues (PS) 50.0 ± 3.5 28.5 ± 3.3

data. Visually, the reconstruction from only 25% of the data strongly resembles the
full data: it is apparent that as the workload increases from left to right, the thins
are only lightly loaded, and the increase in response time is due to workload on the
database tier.

To obtain a quantitative measure of error, we partition time into 50 equal-sized
bins, and compute the mean service time for each bin and each tier of the system.
We report the root mean squared error (RMSE) between the reconstructed service
times from the incomplete data and the service times that would have been in-
ferred had the full data been available. We perform reconstruction on ten different
random subsets of 25% and 50% of the jobs. We use two baselines: (a) one that
always predicts that the response time is composed only of the service time (de-
noted “Wait = 0”) and (b) a linear regression of the per-job waiting time onto the
workload in the last 500 ms. Results are reported in Table 2.

The posterior sampler performs significantly better at reconstruction than the
baselines, achieving a 25% reduction in error for 25% data observed, and a 54%
reduction in error for 50% data observed. Linear regression performs poorly on
this task, performing worse than the trivial “Wait = 0” baseline. Interestingly, the
performance of linear regression, unlike the queueing network, does not improve
with additional data. This supports the idea that the poor performance of linear
regression is due to limitations in the model.

8. Model selection. A final application of our framework is model selection.
Although model selection has received relatively little attention in the context of
queueing models, it has the potential to be greatly useful, because the performance
characteristics of a software system are often not completely understood even to its
developers. For example, often systems are built from external components, such
as software libraries, whose internal workings are not fully known. Furthermore,
even if the source code for every component is available, system performance may
differ from expectations because of software bugs, hardware failures, or miscon-
figuration of the system. In either case, a concise model can serve as a summary of
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FIG. 5. Alternative models for missing-queue detection. At left, queueing network representing the
null model. Center, network representing a hypothetical alternative model. At right, model used to
generate synthetic data for the experiments described in Section 8.

system performance under different workloads, revealing queueing dynamics that
may be unexpected.

We demonstrate this idea on a task that we call missing queue detection. Sup-
pose that we are analyzing a system whose expected behavior is described by the
queueing network in Figure 5(a), which consists of a pool of independent “work
queues.” If there is a bug in the system, however, the actual performance behavior
may be different than expected. If there is a bug, we might hypothesize that the
actual system behavior is described by Figure 5(b), in which a “bottleneck queue”
has been added, which has the effect of coupling the response times of all tasks that
are served by different work queues. The data consists of the arrival and departure
time of each task from the system as a whole, and the identity of the “work queue”
to which the task was assigned. The transition time between the work queues and
the bottleneck queue is necessarily unobserved. On the basis of such data, the goal
of missing queue detection is to choose between the models in Figure 5(a) and (b),
in other words, to determine whether the system exhibits unexpected queueing
dynamics.

A natural approach is based on least angle regression (LARS) [Efron et al.
(2004)]. In this approach, we perform a regression of the average response time
of jobs at each of the work queues, aggregated over 5-second intervals, onto two
covariates: the number of jobs at that work queue, and the number of jobs arriving
in the entire system. The regression model is chosen based on the Cp-type statistic
described in Efron et al. (2004). If there is no bottleneck, then the response times
of jobs that are assigned to different queues should be independent, so the coef-
ficient of the second covariate—number of jobs in the entire system—should be
zero. So if that coefficient is nonzero, we predict a bottleneck. Despite the natu-
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ralness of this approach, it might perform poorly because the relationship between
the covariates and the response time is highly nonlinear.

We consider an alternative approach based on a queueing network model. We
use a simple procedure for selection among nested families of queueing models.
The procedure relies on the fact that commonly used families of service time dis-
tributions, such as exponential, gamma, and lognormal, include distributions that
come arbitrarily close to putting all their mass at zero. The method is to start with
a queueing network that represents the expected performance of the system, based
on the developers’ prior knowledge. Then add a single hypothesized queue to the
network, called the bottleneck queue, that represents a hypothetical bottleneck in
the system. The Gibbs sampler now yields a sequence m1,m2, . . . ,mN of mean
service times for the bottleneck queue. Choosing between the base model and the
augmented model can be thought of as testing whether the mean service time of the
bottleneck queue is zero. To do this, we use the test statistic z = N−1 ∑N

i=1 mi/σ ,
where σ is the standard deviation of the mi . This statistic is asymptotically nor-
mal. An alternative approach to model selection might rely on directly computing
the likelihood, but computing this quantity is notoriously difficult in the queueing
setting, even for models that are much simpler than ours.

For the purposes of demonstrating the technique, we use a simple search through
model space, in which we hypothesize a bottleneck involving two of the five
queues, as in Figure 5(b). Ten possible alternative models are considered, each cor-
responding to a different pair of work queues being connected to the bottleneck.
For each possible network, we test the hypothesis that the mean of the bottleneck
queue is zero, as described above. The result of the test is counted as correct if the
null is accepted and the true network is Figure 5(a), or if the null is rejected and
the true network is Figure 5(c). The confidence level used is 0.025.

We test both LARS and the queueing model-based technique on synthetic data
generated from the models in Figure 5(a) and (b). For both models, the arrival
process is a homogeneous Poisson process with parameter λ = 1. The service-
time distribution of the work queues is exponential with mean 2.5, so that each
work queue has utilization 0.5. For the model in Figure 5(b), the utilization of
the bottleneck queue is varied in {0.001,0.1,0.25,0.5,0.75}. Each synthetic data
set contains 100 tasks. The mean parameters of the service-time distributions are
resampled in a Bayesian fashion, using the prior described in Section 2.4. The
sampler is run for 5000 iterations. This experiment is repeated 5 times on indepen-
dently generated synthetic data sets.

The performance of the two techniques is shown in Table 3. We report the per-
centage of correct missing queue decisions, as a function of the utilization of the
bottleneck queue. When the utilization of the bottleneck queue is high, the miss-
ing queue should be easy to detect. The LARS-based method performs very poorly,
performing only slightly better than chance (chance is 50%) even on the easy cases.
The queueing model technique, on the other hand, performs perfectly on the easy
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TABLE 3
Error on missing-queue selection problem, as a function of the
utilization of the bottleneck queue. Lower utilization makes the

model selection problem harder. Chance performance is 0.5

Error Error
Utilization (queueing model) (linear model)

0.001 0.50 0.55
0.100 0.43 0.54
0.250 0.28 0.49
0.500 0.02 0.49
0.750 0 0.43

cases, and does progressively worse as the problem becomes harder. Figure 6 dis-
plays the same data as an ROC curve, generated using the R package of Sing et
al. (2005). The model selection method has an area under the ROC curve of 0.92,
while that for the LARS-based method is 0.57.

9. Discussion. In this paper we have introduced a novel perspective on queue-
ing networks that allows inference in the presence of missing data. The main idea
is that a queueing model defines a deterministic transformation between service
times, which are independent, to the measured departure times, which are highly
dependent. This perspective allowed us to develop an MCMC sampler for the pos-
terior distribution over the missing departure time data. To our knowledge, this is

FIG. 6. Performance on missing-queue detection (ROC curve).
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the first example of inference in networks of queues with missing data. We demon-
strated the effectiveness of this approach on data from an actual Web application.

The fact that queueing networks are natural models of distributed systems is
attested to by a large literature on these models in computer science. For example,
previous work has considered queueing network models of single computer sys-
tems [Lazowska et al. (1984)], computer networks [Kleinrock (1973)], distributed
file systems [Thereska and Ganger (2008)], and Web applications [Urgaonkar et
al. (2005); Welsh (2002)]. Our work builds on this literature, providing a statistical
perspective on networks of queues.

Within the statistical literature, inference in single-queue models has been con-
sidered in both frequentist and Bayesian settings [Armero and Bayarri (1994a);
Bhat, Miller and Rao (1997); Insua, Wiper and Ruggeri (1998)]. Previous work
has focused on single queues rather than networks, however [for exceptions, see
Armero and Bayarri (1999), and Thiruvaiyaru and Basawa (1992)]. In addition,
previous work has typically focused on a restricted class of queueing disciplines
and restricted patterns of missing data. For example, one special case that has
been considered is a single-queue model in which all of the departure times are
observed, but none of the arrival times. Heggland and Frigessi (2004) present an
estimator for this problem based on indirect inference. Fearnhead (2004) presents
a potentially more efficient algorithm based on ideas similar to the embedded
Markov chain from queueing theory, while earlier Jones (1999) presents a similar
algorithm that takes balking into account. The indirect inference approach could
possibly be extended to more general situations, but it is difficult to see how to do
so with the dynamic programming approaches of Jones and Fearnhead. Another
special setup that has been considered, again in single queues, is the multi-step
interdeparture distribution [Luh (1999)].

One issue that has been raised in the literature on Bayesian statistics in queueing
models is the effect of the prior. For example, as Armero and Bayarri (1994b)
point out, in an exponential single-processor queue, if gamma priors are placed on
the service and arrival rates, then the posterior moments of certain performance
metrics, such as the steady-state number of customers in a system, do not exist.
This is a disturbing issue if the goal of the analysis is to predict the long-term
behavior of the system. In diagnostic settings, however, such as those in Section 7,
this is a less serious issue, because our interest lies in estimating the service times s
of individual jobs. The moments of the distribution p(s|O,θ) do exist, even if the
system is asymptotically unstable. That having been said, it would not be difficult
to modify our sampler to incorporate more sophisticated priors on θ that address
this issue, such as those of Armero and Bayarri (1994b).

Another research area that is related to the current work is network tomography
[Castro et al. (2004); Coates et al. (2002)], which focuses on problems such as
estimating the delays on each link of a network solely from measurements of the
end-to-end delay. This is a markedly different inferential problem from ours, in
that the network tomography literature does not focus on how much of the link
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delay is caused by the load on that link. For this reason, in our setting the observed
data always includes the number of requests in the system, a measurement that is
usually assumed to be unavailable in the network tomography setup.

Finally, the current work suggests several largely unexplored directions for fu-
ture research. One direction concerns extensions to the queueing models them-
selves, such as using a generalized linear model in the service distribution. An-
other direction involves a hierarchical prior on θ , for example, to model the fact
that some queues may be known to run similar software and hardware, and there-
fore should have similar performance characteristics. It would also be interesting
to examine the effects of the prior and of the choice of service distribution on data
imputation. Finally, at a higher level, this work can be viewed as a coarse-grained
generative model of computer performance, and more detailed models could be
of significant interest. More information about the current state of the art in large-
scale Web applications can be found in a recent book by two leading engineers at
Google [Barroso and Hölzle (2009)].
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