33 research outputs found

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    A survey of RDB to RDF translation approaches and tools

    Get PDF
    ISRN I3S/RR 2013-04-FR 24 pagesRelational databases scattered over the web are generally opaque to regular web crawling tools. To address this concern, many RDB-to-RDF approaches have been proposed over the last years. In this paper, we propose a detailed review of seventeen RDB-to-RDF initiatives, considering end-to-end projects that delivered operational tools. The different tools are classified along three major axes: mapping description language, mapping implementation and data retrieval method. We analyse the motivations, commonalities and differences between existing approaches. The expressiveness of existing mapping languages is not always sufficient to produce semantically rich data and make it usable, interoperable and linkable. We therefore briefly present various strategies investigated in the literature to produce additional knowledge. Finally, we show that R2RML, the W3C recommendation for describing RDB to RDF mappings, may not apply to all needs in the wide scope of RDB to RDF translation applications, leaving space for future extensions

    Towards Uniform Access to Web Data and Services

    Get PDF
    A sizable amount of data on the Web is currently available via Web APIs that expose data in formats such as JSON or XML. Combining data from different APIs and data sources requires glue code which is typically not shared and hence not reused. We derive requirements for a mechanism that brings data and functionality currently available via ad-hoc APIs into a coherent framework. Such standardised access to content and functionality would reduce the effort for data integration and the combination of service functionality, leading to reduced effort in composing data and services from multiple providers

    Translation of Heterogeneous Databases into RDF, and Application to the Construction of a SKOS Taxonomical Reference

    Get PDF
    International audienceWhile the data deluge accelerates, most of the data produced remains locked in deep Web databases. For the linked open data to benefit from the potential represented by this huge amount of data, it is crucial to come up with solutions to expose heterogeneous databases as linked data. The xR2RML mapping language is an endeavor towards this goal: it is designed to map various types of databases to RDF, by flexibly adapting to heterogeneous query languages and data models while remaining free from any specific language. It extends R2RML, the W3C recommendation for the mapping of relational databases to RDF, and relies on RML for the handling of various data formats. In this paper we present xR2RML, we analyse data models of several modern databases as well as the format in which query results are returned , and we show how xR2RML translates any result data element into RDF, relying on existing languages such as XPath and JSONPath when necessary. We illustrate some features of xR2RML such as the generation of RDF collections and containers, and the ability to deal with mixed data formats. We also describe a real-world use case in which we applied xR2RML to build a SKOS thesaurus aimed at supporting studies on History of Zoology, Archaeozoology and Conservation Biology

    A Generic RDF Transformation Software and its Application to an Online Translation Service for Common Languages of Linked Data

    Get PDF
    International audienceIn this article we present a generic template and software solution for developers to support the many cases where we need to transform RDF. It relies on the SPARQL Template Transformation Language (STTL) which enables Semantic Web developers to write specific yet compact RDF transformers toward other languages and formats. We first briefly recall the STTL principles and software features. We then demonstrate the support it provides to programmers by presenting a selection of STTL-based RDF transformers for common languages. The software is available online as a Web service and all the RDF transformers presented in this paper can be tested online

    A Framework for Automating the Invocation of Web APIs

    Get PDF
    Web APIs, characterized by their relative simplicity and their natural suitability for the Web, have become increasingly dominant in the world of services on the Web. Despite their popularity, Web APIs are so heterogeneous in terms of the underlying principles adopted and the means used for publishing them that discovering, understanding and notably invoking Web APIs is nowadays more an art than a science. In this paper, we present our work towards supporting the automated invocation of Web APIs. In particular, we describe a framework that provides a unique entry point for the invocation of most Web APIs that can be found on the Web, by exploiting non-intrusive semantic annotations of HTML pages describing Web APIs in order to capture both their semantics as well as information necessary to carry out their invocation
    corecore