
Open Research Online
The Open University’s repository of research publications
and other research outputs

A Framework for Automating the Invocation of Web
APIs
Conference or Workshop Item
How to cite:

Li, Ning; Pedrinaci, Carlos; Maleshkova, Maria; Kopecky, Jacek and Domingue, John (2011). A Framework
for Automating the Invocation of Web APIs. In: ICSC 2011 Fifth IEEE International Conference on Semantic
Computing, 19-21 Sep 2011, Palo Alto, CA, USA.

For guidance on citations see FAQs.

c© 2011 The Authors

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://www.ieee-icsc.org/ICSC2011/ICSC 2011 Advance Program.htm

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/82962626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://www.ieee-icsc.org/ICSC2011/ICSC_2011_Advance_Program.htm
http://oro.open.ac.uk/policies.html

OmniVoke: A Framework for Automating the
Invocation of Web APIs

Ning Li, Carlos Pedrinaci, Maria Maleshkova, Jacek Kopecky, John Domingue
Knowledge Media Institute (KMi), The Open University

Milton Keynes, United Kingdom
{n.li, c.pedrinaci, m.maleshkova, j.kopecky, j.domingue}@open.ac.uk

Abstract—Web APIs, characterized by their relative simplicity and
their natural suitability for the Web, have become increasingly domi-
nant in the world of services on the Web. Despite their popularity,
Web APIs are so heterogeneous in terms of the underlying principles
adopted and the means used for publishing them that discovering,
understanding and notably invoking Web APIs is nowadays more an
art than a science. In this paper, we present our work towards sup-
porting the automated invocation of Web APIs. In particular, we de-
scribe a framework that provides a unique entry point for the invoca-
tion of most Web APIs that can be found on the Web, by exploiting
non-intrusive semantic annotations of HTML pages describing Web
APIs in order to capture both their semantics as well as information
necessary to carry out their invocation.

Keywords-semantic Web services; Web APIs; service
invocation; grounding;

I. INTRODUCTION
The world of services on the Web has recently been marked

by the proliferation of Web APIs, which seem to be preferred
over “classical” Web services based on WSDL and SOAP [1-
3]. Web APIs, also called RESTful services when they conform
to REST principles [4] are used by most major Web sites such
as Facebook, Flickr, Salesforce or Amazon to provide access to
their data and functionality. This trend is largely impelled by
the simplicity of the technology stack, essentially URIs and
HTTP, as well as by the rapidity with which third parties are
combining diverse APIs into mashups that provide added-value
solutions [3]. Yet, Web APIs are most often described solely
through HTML Web pages that are thought for humans and
pose outstanding difficulties for their automated identification
and interpretation in order to support, for example, automated
Web API discovery and invocation [1].

Despite their popularity, the use of Web APIs still requires
therefore extensive manual effort, which involves developing
custom tailored software that can hardly be reused. A number
of researchers and developers are devising generic solutions for
better supporting the description, discovery, and composition
of Web APIs [3, 5, 6, 7]. These approaches build upon the
wealth of research on “classical” Web services and adapt it to
deal with Web APIs. Yet, a quick look at some of the existing
Web APIs shows significant differences when compared to
“classical” Web services. The most notable distinction lies in-
deed in the fact that there is no established interface definition
language (IDL), despite some proposals like WADL [5], or
even WSDL 2.0 [8]. In practice, the uptake of these languages

has been very limited and most Web APIs solely provide hu-
man-oriented HTML documentation [1]. In the light of these
very characteristics, researchers have also focused on providing
support for enriching the HTML documentation of Web APIs
with semantic annotations and exploiting these annotations for
the identification and advanced discovery of Web APIs, see for
instance [7, 9, 10, 11].

Although considerable advances have been obtained, sup-
porting the automated invocation of Web APIs is yet to be ad-
dressed comprehensively. To our knowledge, the main results
in this respect, see e.g. [12, 13], fail to provide a solution ge-
neric enough to support the automated invocation of the ex-
tremely heterogeneous APIs that can be found on the Web
nowadays. The reason for this is twofold. On the one hand,
automated service invocation has not been prominently ad-
dressed by semantic Web services researchers because the in-
vocation of “classical” Web services is directly supported by
WSDL (the main concern in this case is data transformation).
On the other hand, supporting the invocation of Web APIs gen-
erically presents a number of outstanding and somewhat unex-
pected challenges given the previous experience with WSDL
services. These challenges originate from the lack of an estab-
lished IDL and the remarkable heterogeneity in Web APIs idio-
syncrasy, technical characteristics, specification formats, and
even under-specification in many cases [1].

In this paper, we present OmniVoke, a framework that aims
to automating the invocation of generic Web APIs. The frame-
work provides a unique entry point for the invocation of most
Web APIs that can be found on the Web, The framework thus
abstracts away the heterogeneities of different APIs and conse-
quently eliminates the need for developing a custom tailored
client per Web API. Our framework relies on non-intrusive
semantic annotations of HTML pages describing Web APIs, in
order to capture both their semantics as well as the information
necessary to carry out their invocation. The framework devel-
oped is based on RESTful principles to simplify its use and to
adequately exploit the Web infrastructure for scalability. The
engine includes a RESTful interface enabling the invocations
as well as the monitoring or post-mortem analysis of APIs exe-
cution by publishing associated artifacts generated or used dur-
ing the interaction with remote APIs, such as messages ex-
changed, etc.

This paper is organized as follows: In Section II, we firstly
provide background information covering notably the hetero-
geneity of the current Web APIs, and the derived complexity

This work was partly funded by the EU project SOA4All (FP7-215219).

towards their automated invocation. Section III presents our
extensions to an existing semantic model for describing Web
APIs including support for capturing all the information neces-
sary for invoking the majority of the existing Web APIs. In
Section IV, we describe the functionality of the proposed
framework OmniVoke. Section V provides the architecture,
components and interfaces of OmniVoke. In Section VI, we
give implementation details of the proposed framework with
illustrations. Section VII presents related work. In Section VIII,
we conclude the paper and discuss future works.

II. BACKGROUND

A. Invocation of Web APIs
The invocation of Web APIs, requires composing an HTTP

request, sending it and processing the response. In order to do
this, one needs information about the address of the service, the
HTTP method, the input/output data type(s), input/output data
format(s), error types, etc. These aspects are indeed highly het-
erogeneous depending on the actual service at hand, and are by
no means a specific problem related to Web APIs. However,
they certainly have highlighted in the past the need for captur-
ing formally the semantics of services in order to adequately
support their management and invocation.

An analysis of existing APIs [1] shows that Web APIs ex-
hibit an additional and more fundamental level of heterogeneity
concerning their idiosyncrasy. In particular, we shall use herein
the service classification given in [14], whereby services can be
one out of the three following types: 1) RESTful resource-
centered services which conform to the representational state
transfer (REST) paradigm [4] and expose a URI for every piece
of data the client might operate on using HTTP methods; 2)
REST-RPC hybrid services, which, although mostly resource-
centered, expose a URI for every operation the client might
perform on a resource, e.g. one URI to fetch the data and an-
other one to delete the data; and 3) RPC-style services that ex-
pose one URI for every process, be it resource-centered or ac-
tion-centered, capable of handling RPC over various protocols.

In correspondence with this classification, we name a few
heterogeneities of Web APIs that are crucial for their invoca-
tion.

• URI format. The form of the URI used is closely re-
lated to the implementation style of the service. For re-
source-oriented APIs, resources can be identified and
accessed with directory-structure-like URIs, or via op-
eration URIs. For example, the same sports news can
be retrieved from a news website by using HTTP GET
http://url/…/news/sports in a RESTful way or by using
HTTP GET http://url/…/getNews?type=sports in a
REST-RPC hybrid way. A survey on Programmable-
Web1, the largest reposity for Web APIs online, has
found that almost two thirds of the Web APIs are either
REST-RPC hybrid or RPC-style services and only one
third are strict RESTful APIs as of Feb. 2010 [1].

• Input data grounding. Closely related to the varia-
tions in URI forms, when it comes to invoking a Web

1 http://www.programmableweb.com

API given input data, it is necessary to make decisions
upon where the input data is grounded in. In some
cases, input data is to be used as part of the URI. In
other cases, it is used in message header or in message
body. This is very specific to Web APIs as opposed to
WSDL-based services, which were just about con-
structing a SOAP message. Taking authentication cre-
dentials input as an example, our survey found that
70% of the Web APIs that require authentication send
authentication information directly in the URI, while less
than one third require that the HTTP header be con-
structed. Accordingly, these numbers are similar for invo-
cation in general, where about one third of the APIs re-
quire the construction of the HTTP header or body, while
the rest send input information through the URI [1].

• Input/Output data format. While XML has been a
predominant format for data transfer over the Web, e.g.
in WSDL/SOAP-based services, JSON has become in-
creasing popular in the realm of Web APIs. Content
negotiation may be required in order to produce output
as well as consuming input in the right representation
formats to avoid service failure. Though there exist
other formats, such as HTML, RSS, Object etc., pro-
viding support for the use of XML and JSON addresses
the vast majority of the APIs [1].

B. Semantic Annotation and Description of Web APIs
The information of Web APIs usually needs to be captured

in common documentation formats in order to facilitate the
proper usage, including invocation. The effort towards auto-
mating the interaction with APIs needs to firstly address the
issues of how to explicitly describe the semantics of such in-
formation. Since most Web APIs rely only on HTML docu-
mentation with no fixed structure or content, hRESTS [7], a
microformat using class and rel XHTML attributes, was pro-
posed to enable the creation of machine-processable descrip-
tions on top of existing HTML descriptions. hRESTS intro-
duces tags for marking the service description as a whole, the
HTTP method being used, the operation with corresponding
access address, input and output. MicroWSMO [7] builds on
top of hRESTs, similar to SAWSDL [15] extending WSDL, to
support the semantic annotation of the intended meaning of the
tagged entities, which represent links to URIs of semantic con-
cepts. In it, the model tag indicates that the URI is a link to an
ontology entity, while lifting and lowering point to links for
lifting and lowering transformations between the level of syn-
tactic and semantic descriptions, which result in the creation of
SAWSDL-like [15] annotations. Take Nestoria API2, a prop-
erty search service, as an example, an excerpt of the HTML
description enhanced with hRESTS and MicroWSMO annotations
is shown in Listing 1. For clarity, only the “search listings”3 opera-
tion is described and information irrelevant to hRESTS and Mi-
croWSMO annotations in the original HTML document has been
removed. It shows that the service NestoriaService has a
SearchListingsOperation. It has three input parameters
place_name, price_min and price_max, each of which has
model reference(s) to external ontology entities, i.e. to a real

2 http://www.nestoria.co.uk/help/api

3 http://www.nestoria.co.uk/help/api-search-listings

estate ontology, and share one common lowering script.
Thanks to the Semantic Web sErvices Editing Tool (SWEET)4
[10], any Web APIs with descriptions in plain HTML can be
annotated with hRESTS and MicroWSMO, which later can be
transformed to an RDF representation described by a service
ontology model (described next) through XSLT for example.

 LISTING 1. NESTORIA SERVICE HRESTS DESCRIPTION

1 <div class="service" id="s1"><h1> NestoriaService</h1>
2 <div class="operation" id="op1">
3 <h2>SearchListingsOperation</h2>
4 http://api.nestoria.co.uk/api?action=search_listings
5
5
6 <h3><a rel="lowering" href=
7 "http:// iserve-dev.kmi.open.ac.uk/lilo/SearchListingsLowering.xs">
8 lowering</h3>
9 <h3><a rel="model" href=
10 "http://iserve.kmi.open.ac.uk/ontology/location.rdf#hasName">
10 <a rel="model" href=
11 "http://ierve.kmi.open.ac.uk/ontology/location.rdf#hasPostcode">
12 place_name </h3>
13 <h3><a rel="model" href=
14 "http://iserve.kmi.open.ac.uk/ontology/estate.rdf#hasMinPrice">
15 price_min</h3>
16 <h3><a rel="model" href=
17 "http://iserve.kmi.open.ac.uk/ontology/estate.rdf#hasMaxPrice">
18 price_max</h3>
19 </div></div>
--

The service ontology model, referred to as Minimal Service
Model (MSM) [11], is a simple RDF(S) ontology that was de-
signed to capture the core semantics of both “classical ”Web
services and Web APIs in a common model. From Web APIs
perspective, it provides the RDF vocabulary to describe seman-
tics associated with HTML service description annotated with
hRESTS and MicroWSMO. It defines four main concepts, in-
cluding Service, Operation, MessageContent and Mes-
sagePart. A Service has a number of Operations, which in
turn have input and output MessageContent. Faults are also
defined as input or output faults of operations in the form of
MessageContent. The MessageContent itself may contain
optional or mandatory MessagePart. The purpose of the mes-
sage part mechanism is to enable the definition of individual
parameter mappings, groundings as well as additional charac-
teristics, which apply only to parts of the input as opposed to it
as a whole massage. It uses the SAWSDL RDF vocabulary5 to
capture the three kinds of annotations, made through Mi-
croWSMO, that hook service descriptions with semantic con-
cepts or data transformation scripts. RDF vocabularies describ-
ing attributes particular to Web APIs are enclosed as hRESTS
vocabulary, i.e. under hRESTS namespace. Originally,
hRESTS included some basic grounding mechanisms, namely
the concept URITemplate to describe the URI for invocation,
but this had substantial limitations which we had to address
while developing OmniVoke. For more details of the MSM,
please refer to http://purl.org/msm/1.0 and [11]. The RDF de-
scription for the Nestoria API transformed from the annotated
HTML in Listing 1 is shown in Listing 2, which, besides those

4 http://sweet.kmi.open.ac.uk
5 http://www.w3.org/TR/sawsdl/#rdfmapping

directly obtained from Listing 1, contains also descriptions that
support invocation of the service. These additional descriptions
are based on the MSM extensions developed in this paper
which will be described in Section III. As such, the MSM pro-
vides a common vocabulary, able to describe services in a way
that allows machines to directly interpret their semantics, for
supporting service tasks like discovery. It initially provides
supports for common publishing and search of services, yet still
permitting extensions when such a need arises, such as invoca-
tion.

C. Invoking Web APIs through Semantic Description
The information concerning the invocation of Web APIs, as

described in Section II A, is fundamental for supporting the
creation of client application. Similar to automating other serv-
ice tasks, automating the invocation of Web APIs rely on se-
mantic extensions to service properties. In Section III, we will
describe how we have extended the MSM with description
mechanisms to support service invocation. In Section IV, V
and VI, we will present OmniVoke, a generic Web API invoca-
tion client framework able to provide a unique entry point to
the invocation of Web APIs through their semantic descrip-
tions. Therefore, once Web APIs are semantically described,
thus obtained semantic service descriptions need to be made
available for automated interpretation by OmniVoke prior to an
invocation call to the actual APIs. The semantic Web service
publishing platform iServe [11], developed in the context of the
EU project SOA4All6, can be used for hosting semantic service
descriptions, although this is not a requirement of the Om-
niVoke framework.

III. EXTENDED MINIMAL SERVICE MODEL AND HRESTS
The Minimal Service Model, in its original design, was not

particularly targeted nor well suited for supporting the invoca-
tion of Web APIs. The model especially failed to define input
data grounding, which needs to specify whether the input val-
ues are transmitted as part of the URI, HTTP headers or the
HTTP request message body (applicable to HTTP POST and
PUT requests). In this section, we describe how we have ex-
tended the MSM with data grounding description mechanisms
to support automated invocation of Web APIs. The extended
MSM is published at http://purl.org/msm/1.1. As it relies on
the syntactical structuring of the HTML documentation in
terms of identifying service properties given by hRESTS anno-
tation, an extension to the MSM is embodied in the extension
to the hRESTS vocabulary. In Sections IV, V and VI we de-
scribe and illustrate how the OmniVoke framework we have
developed exploits these annotations to automate the invoca-
tion of heterogeneous Web APIs.

As originally described, hRESTS expected a single lower-
ing transformation, as shown in Listing 1, that would apply to
the whole input message. In our extension, we allow finer-
grained (and thus more reusable) lowering transformations on
individual message parts. Every message part corresponds ei-
ther to a URI parameter (specified in the URI template of a
service’s operation), a particular HTTP header or the HTTP
body. To capture this correspondence, we introduce a property

6 http://www.soa4all.eu

isGroundedIn whose value is either an identifier from the
HTTP vocabulary [16] or a literal string. The HTTP vocabulary
allows the isGroundedIn property to identify that the result of
the lowering transformation becomes the value of a particular
HTTP header, or of the HTTP body. If the isGroundedIn
property has a literal value, it names the URI parameter that
will contain the value of the lowering transformation.

In situations where input RDF data is grounded in HTTP
body, the lowering schema mapping must lower the RDF data
to a format supported by the actual Web API, for example
JSON or XML, and OmniVoke must know what the format is,
so it can include the appropriate Content-type HTTP header.
Similarly, the response message body needs to be lifted to RDF
using a lifting schema mapping transformation that supports its
actual format; in other words, OmniVoke must select a lifting
schema mapping transformation that supports the content type
of the concrete response message. To do that, we add metadata
on lowering and lifting schema mappings: for a lowering map-
ping, we describe the content type that the mapping produces
(using the property producesContentType), and for a lifting
mapping, we describe the content type that it can process (ac-
ceptsContentType). Both properties point to a literal string
that names a MIME media type.

The three properties described above are RDF properties
that extend the Minimal Service Model. In actual HTML serv-
ice descriptions, they are included in the hRESTS microformat.
The property isGroundedIn is represented with the new
HTML class/link relation “grounding” (a class for literal val-
ues, a link relation for HTTP vocabulary identifiers) within an
input description; and the properties producesContentType
and acceptsContentType are captured with the new HTML
class “content-type” within the lifting or lowering annotations.
The HTML description with such annotation extensions will
look similar to what has been shown in Listing 1.

IV. OMNIVOKE FUNCTIONALITY

Appropriately supporting the use and management of het-
erogeneous services requires sharing the semantics of services
through formal machine-processable descriptions as well as
using a common syntax for representing these descriptions and
the data exchanged or adequate transformation mechanisms.
We previously introduced that we use RDF(S) for describing
services semantically. We shall therefore also use RDF as lin-
gua-franca for communicating with OmniVoke. Doing so car-
ries out additional requirements like the need to provide
mechanisms for transforming messages between RDF and the
data format used by the Web APIs internally if necessary.

In more detail, we have identified the following require-
ments for OmniVoke:

• Validate invocation request. In general, an invocation
request is issued to an operation of a Web API. Given
semantic description of the operation to be invoked,
OmniVoke should be able to carry out initial check
whether the request is valid, e.g. whether the Web API
indeed contains such an operation, by solely looking

into its semantic description without communication to
the actual Web API yet.

• De-capsulate invocation request, figure out what in-
formation should be handled in what way, i.e. what in-
formation is for OmniVoke’s local use and what in-
formation should be passed onto the actual Web API
for invocation use and how. For example, some infor-
mation in service descriptions can be used to validate
request by OmniVoke and the RDF input data, usually
part of the body of the request message for its poten-
tially large size, should be translated into the essential
information for carrying out the actual invocation, such
as a path parameter, a query string in address URI, a
key-value pair in the HTTP header or an XML mes-
sage in the HTTP body. This is facilitated by the “is-
GroundedIn”, “producesContentType” service descrip-
tions.

• Map RDF input data to the expected data format
used internally by the service implementation, e.g.
plain literal, XML, JSON etc. The decision may de-
pend on where the input data is grounded in, e.g. the
underspecified bits of address URI, message header,
message body etc. The mapping process is referred to
as “lowering” by the semantic web services community
[15].

• Compose the invocation request to the actual Web
API using the appropriate URI, method, message
header, message body etc. Part of this information can
be obtained directly from the service description, such
as method, while other parts need to be constructed
from the “lowered” input driven by its semantic service
description. For example, the “isGroundedIn” property
of the input determines where the “lowered” input is
used, and the “producesContentType” property of the
lowering schema mapping determines the format of the
message body.

• Invoke the actual Web API when a valid request is
composed.

• De-capsulate the response message obtained and fig-
ure out what information should be handled in what
way. For example, non-RDF response message body
needs to be “lifted” to RDF, as will be described next.
Response status and error messages also need to be
“lifted” if further usage of that information is antici-
pated. Standard HTTP error codes can be directly
mapped to their counterparts in the standard HTTP vo-
cabulary in RDF7.

• Map non-RDF data, e.g. XML, JSON in response
message body to RDF. This process is referred to as
“lifting” in SAWSDL. If the API supports RDF output
format, e.g., Sindice search API8 or the Geonames
search API9, no lifting is needed. Lifting schema map-

7 http://www.w3.org/TR/HTTP-in-RDF10/

8 http://sindice.com/developers/searchapi
9 http://www.geonames.org/export/ws-overview.html

ping will be required for non-standard HTTP error
messages, as seen in Lastfm API10.

V. OMNIVOKE

A. Architecture
With data sources on the Web undergoing a developing

trend towards Linked Data [17], Web APIs, which provide on-
the-fly computation of data resources through invocation, need
to progress in order to continue playing their roles as Linked
Data prosumers when invoked through semantic extensions.
Therefore, OmniVoke takes RDF data as input and returns
RDF data as response data, thus enabling a seamless integration
of Web APIs, as semantic data prosumers [20], into the RDF
linked data space. In order to carry out concrete invocations,
the envisaged scenario is for applications to issue SPARQL
queries to derive the data required for invoking a particular
Web API [2]. Alternatively appropriate user-interaction inter-
faces can be provided to allow the user to provide his/her input,
which, together with response data, may be collected into
shared data space for further manipulations like inspection, re-
use etc. In latter case, the user is typically presented with a set
of input fields, which need to be completed in order to invoke
the service. Semantic annotations or descriptions of the service
can be attached here to aid the user. Additional information
such as comments can be provided to support the user resolv-
ing any potential ambiguities. OmniVoke supports both means
of deriving request data. Fig. 1 depicts the architecture of Om-
niVoke.

Figure 1. OmniVoke Architecture

B. Components
In correspondence to its functionalities described in Section

IV, OmniVoke consists of the following components, as drawn
in Fig. 1.

• Request Handler

10 http://www.last.fm/api/show?service=270

The Request Handler is triggered when an invocation
request is received. It carries out the tasks of validating
and de-capsulating the invocation request. It acts in
correspondence to the set of HTTP methods or verbs
(e.g., GET, PUT, POST, or DELETE). If an action for
a given verb is not defined, a request using such verb
will be answered with HTTP code 405 (Method not al-
lowed). There is no limit on the number of concurrent
activation of such handler.

• Lowering
The Lowering component undertakes tasks of “lower-
ing” RDF input data to the format supported by the ac-
tual API. It works by executing the “lowering” scripts
designed for each input that requires lowering and at-
tached to that input in the service description, a mecha-
nism proposed in SAWSDL. However, SASWDL im-
poses neither restrictions nor prescriptions on the
choice of the script language. Programmatically,
XSLT11 together with SPARQL12 has been used widely
within the community. Lately, XSPARQL [18] which
combines XQuery13 and SPARQL have been recog-
nized as a more effective language due to its advan-
tages of avoiding the unnecessary detour of SPARQL
query results.

• Request Composer

The task of Request Composer is to construct a valid
request for invoking the actual Web API using infor-
mation given in service description and the “lowered”
input, which now is in the form supported by the actual
Web API.

• Response Handler
Once the Web API is invoked and the response is re-
turned, the Response Handler is triggered to de-
capsulate the response, i.e. extract output information
mainly status code, response data, out of response
header, body etc., and decide whether lifting is re-
quired for each output, with the help of the service de-
scription.

• Lifting
The Lifting component carries out the execution of
“lifting” scripts attached to the output that requires lift-
ing, as annotated in service description. Similar to
“lowering”, lifting scripts can be written in XSPARQL.

• Response Composer
Once respective outputs are lifted to RDF, a new re-
sponse, comprising only RDF data, is constructed by
Response Composer and represented as the final re-
sponse to the initial invocation request issued to Om-
niVoke.

11 http://www.w3.org/TR/xslt
12 http://www.w3.org/TR/rdf-sparql-query/
13 http://www.w3.org/TR/xquery/

C. Interfaces
The OmniVoke framework, when viewed as a semantic-

processing layer wrapping around existing Web APIs for
automating their invocation, should be exposed in a way that is
amenable for access and manipulation by Linked Data as well
as semantic applications. There are two aspects to the publica-
tion of the OmniVoke framework on the Web in correspon-
dence to its function and resource aspects respectively, as ex-
plained in Section IV and illustrated in Fig. 1. The RDF re-
sources, resulting from invocations, can be published in the
resource-centric RESTful style. But how the functionality of
the OmniVoke framework is exposed will have to take into
account the characteristics of the actual Web APIs that are in-
voked through it.

Though every invocation request to a Web API is raised to
the OmniVoke framework through a homogeneous interface, a
URI that contains the identity of the API semantic description,
seemingly a manipulation of resource and being RESTful. But
when the request is parsed, after retrieving the semantic de-
scription and parsing RDF input data, to form the invocation
request to the actual Web API, it no longer remains always as
RESTful. As said, Web APIs include not just resource-oriented
RESTful and REST-RPC hybrid services, but also the action-
oriented RPC-style services. To support the invocation of all
those service types and genuinely reflect, without modifying,
adding or truncating, the information belonging to the actual
Web APIs, OmniVoke should work out from their semantic
descriptions the different styles, more specifically, the different
interaction interfaces of the actual APIs being invoked and re-
tain all information indispensable to the actual Web APIs.

VI. OMNIVOKE IMPLEMENTATION
The OmniVoke framework exposes its functionality

through a Web API and is published at http://iserve-
dev.kmi.open.ac.uk:8080/RestInvoke/. Any Web API meant for
autonomous invocation via the OmniVoke framework needs to
have its interface semantically described using the extended
MSM model. The semantic descriptions are then published on
the semantic Web service publishing platform iServe in our
implementation though this is not the only way to make service
descriptions available and accessable. In iServe, a Unique
Identity (UID) is allocated to every successfully published Web
API description as semantic identity of the Web API, which
will then be used to uniquely identify the URI for a request
issued to OmniVoke for the ultimate invocation of the Web
API. Given that a Web API usually contains not just one opera-
tion, an invocation request URI should also indicate which op-
eration is to invoke. Therefore, an invocation request URI is
available in the form http://iserve-
dev.kmi.open.ac.uk:8080/RestInvoke/service/{ServiceUID}/ope
ration/{OperationName}/invoke. The request is presented to
OmniVoke via POST method because it triggers the creation of
resources on the server and thus changes the state of the server.
In particular, upon invocation, OmniVoke stores the RDF re-
quest data and the RDF response data for clients’ later retrieval
or inspection. The underspecified path parameters ServiceUID
and OperationName can be obtained from iServe via the serv-

ice discovery modules14, or through the iServe brower15 sup-
ported searching facility.

We still use the Netoria API to illustrate how OmniVoke is
implemented and how it works with other components in the
world of semantic web service to automate service invocation.
First of all, Nestoria API semantic description is created based
on its HTML documentation and then is published on iServe
that allocates to it a UID, i.e. c4e16ab6-3bad-47bb-b613-
90ef78232e31. The service description, in RDF, is retrievable
through iServe’s RESTful interface via a URI16 featured by the
UID for detailed inspection. A snippet of the RDF description
is given in Listing 2.

LISTING 2. NESTORIA API SEMANTIC SERVICE DESCRIPTION.

--
@prefix : <http://iserve.kmi.open.ac.uk/resource/services/c4e16ab6-3bad-47bb-
b613-90ef78232e31#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix sawsdl: < http://www.w3.org/ns/sawsdl#>.
@prefix msm: <http://cms-wg.sti2.org/ns/minimal-service-model#>.
@prefix hrests: <http://purl.org/hrests/1.1#>.
@prefix estate: <http://iserve.kmi.open.ac.uk/ontology/estate.rdf#>.
@prefix location: <http://iserve.kmi.open.ac.uk/ontology/location.rdf#>.
1 :NestoriaService a msm:Service;
2 msm:hasOperation :SearchListingsOperation;
3 hrests:hasAddress "http://api.nestoria.co.uk/api?"^^hrests:URITemplate.
4 :SearchListingsOperation a msm:Operation;
5 msm:hasInput :SearchListingsInput;
6 msm:hasOutput :SearchListingsOutput;
7 hrests:hasMethod "GET";
8 hrests:hasAddress
9 "action=search_listings&place_name={p1}&price_min={p2}
10 &price_max={p3}"^^hrests:URITemplate.
11 :SearchListingsInput a msm:MessageContent;
12 msm:hasPart :place_name, :price_max, :price_min.
13 :place_name a msm:MessagePart;
14 sawsdl:loweringSchemaMapping
15 “http://iserve-dev.kmi.open.ac.uk/lilo/PlaceNameLowering.xs”;
16 sawsdl:modelReference location:hasName, location:hasPostcode;
17 hrests:isGroundedIn "p1"^^rdf:PlainLiteral.
18 :price_min a msm:MessagePart;
19 sawsdl:loweringSchemaMapping
20 “http://iserve-dev.kmi.open.ac.uk/lilo/PriceMinLowering.xs”;
21 sawsdl:modelReference estate:hasMinPrice;
22 hrests:isGroundedIn "p2"^^rdf:PlainLiteral.
23 :price_max a msm:MessagePart;
24 sawsdl:loweringSchemaMapping
25 “http://iserve-dev.kmi.open.ac.uk/lilo/PriceMaxLowering.xs”;
26 sawsdl:modelReference estate:hasMaxPrice;
27 hrests:isGroundedIn "p3"^^rdf:PlainLiteral.
28 :SearchListingsOutput a msm:MessageContent;
29 sawsdl:liftingSchemaMapping
30 “http://iserve-dev.kmi.open.ac.uk/lilo/SearchListingsLifting.txt”;

It shows that the NestoriaService contains a SearchListing-
sOperation, its input message content SearchListingsInput that
contains message parts place_name, price_min and price_max,
and more importantly their links to external ontology entities,

14http://iserve.kmi.open.ac.uk/wiki/index.php/IServe_Higher_Level_Discover
y_API

15 http://iserve.kmi.open.ac.uk/browser.html

16http://iserve-dev.kmi.open.ac.uk/iserve/data/services/c4e16ab6-3bad-47bb-
b613-90ef78232e31

i.e. to a real estate ontology, annotated with SAWSDL model-
Referece as well as the links to loweringSchemaMapping and
liftingSchemaMapping scripts, which are in the form of
XSPARQL queries. The interested readers can obtain the con-
crete description from the given URI. Given the description, an
invocation request can be issued to OmniVoke through the URI
http://iserve-
dev.kmi.open.ac.uk:8080/RestInvoke/service/c4e16ab6-3bad-
47bb-b613-90ef78232e31
/operation/SearchListingsOperation/invoke.

In this example, the input to SearchListingsOperation,
place_name, can be a village/town/place name, or a postcode.
Its loweringSchemaMapping script, as indicated in Listing 2
line 14-15, is given in Listing 3, in which the
<file:StaticInputFile> is a placeholder for input RDF data,
dynamically obtained either from querying the shared RDF
data space or from explicit user input through interaction inter-
faces. The service description indicates that place_name input
is grounded in address URI as the value of the query string p1
(Listing 2 line 17). That means p1 will be substituted with the
value of place_name once lowered from its RDF form to a
plain literal by running the loweringSchemaMapping script.
Similar pattern can be observed for inputs price_min and
price_max, which are grounded also in address URI as values
to the query string p2 (line 22) and p3 (line 27) respectively.
With the actual invocation address URI jointly worked out
from service address annotation and operation address annota-
tion as http://api.nestoria.co.uk/api? ac-
tion=search_listings&place_name={p1}&price_min={p2}&pr
ice_max={p3}, and a RDF input data as shown is Listing 4, the
actual address URI will be derived as
http://api.nestoria.co.uk/api?action=search_listings&place_na
me=MiltonKeynes&price_min=100000&price_max=2000000.

LISTING 3. LOWERINGSCHEMAMAPPING FOR PLACE_NAME INPUT

LISINTG 4. RDF INPUT DATA FOR SEARCHLISTINGSOPERATION

As can we seen, we let place name supersede postcode if
both are provided. Any other information required to form a
valid request for invoking the actual API can be extracted di-
rectly from service description or worked out in a similar man-
ner. Once the Web API is invoked, the invocation response, in
forms implemented by the Web API, will be lifted back to RDF
format, if required, by running respective liftingSchemaMap-
ping17 scripts. In the given example, when the invocation suc-
ceeds and a 200 OK status is returned, a mapping to its RDF
counterpart http://www.w3.org/2006/http#200 will be returned
as the final response status. A complete cycle of invocation is
then finished. Invocation artifacts incurred from this service
invocation, including execution status, inputs/outputs, are
available for access through a RESTful API at http://iserve-
dev.kmi.open.ac.uk:8080/RestInvoke/service/c4e16ab6-3bad-
47bb-b613-
90ef78232e31/operation/SearchListingsOperation/data

VII. RELATED WORK
The work presented in this paper is in line with the efforts

from the SWS community that target to raise the level of auto-
mation for service tasks through semantic descriptions. We are
not the first to address the need for automating the task of serv-
ice invocation. Previous work includes a Web-based tool, ab-
breviated as SPICES [12], which automates the process of con-
suming a Web service by making use of service semantic de-
scriptions. Unlike our work that is especially focusing on Web
APIs, SPICES supports both traditional WSDL services and
RESTful ones and offers end-users the possibility of interacting
with them. Reliant upon similar service description models for
describing RESTful services, i.e. WSMO-Lite, hRESTS and
MicroWSMO, the robustness and scalability of the tool is yet
to be addressed due to the insufficient description capacities of
the description models at that time. Besides, working only for
APIs that follow strictly RESTful principles could not address
the wide range of heterogeneities observed in the variety of
Web APIs. With similar interests, the work in [13], aiming for
automated invocation of RESTful and RPC-style services, pre-
sented an approach that draws the service’s interface into a
HTTP ontology, and use backward-chaining rules to translate
between semantic service invocation instances and the HTTP
messages passed to and from the service. This approach dis-
cards the widely recognized lowering and lifting mechanisms
and works solely at ontology level. It is a plausible approach in
the context of Semantic Web, but the tasks of writing transla-
tion rules as well as auxiliary ontologies can be difficult given
that the information of Web APIs are usually described in
HTML documents. Out of the realm of SWS, some of the is-
sues related to the invocation of Web APIs have been studied
in the context of service composition [3] and dynamic invoca-
tion [19]. This research is based on the introduction of the new
HTTP binding in WSDL 2.0 as a promising approach by wrap-
ping a RESTful service and then describing its interface using
the WSDL language [8]. Semantic descriptions of services used
in this work could apply to the then WSDL-described services.
However, from a practical point of view, a wide adoption of

17 Full text is omitted here. Please follow the link as given in service descrip-
tion for details.

such approach is yet to be seen [3]. In addition, WSDL is not
directly capable of handling JSON format.

VIII. CONCLUSIONS AND FUTURE WORK
This paper, targeting automated invocation of Web APIs,

presents a framework that contains the extensions to the exist-
ing service description model in order to describe the heteroge-
neous particulars to enable their automated invocation and the
OmniVoke framework, which works on semantic descriptions
of Web APIs using the extended service model to automating
the invocation of actual Web APIs. The OmniVoke framework,
including API invocations and a view over their execution
states as well as associated artifacts, is published through Web
API interfaces, the form amenable for access and manipulation
by Web data/applications.

Future work will be devoted to two main aspects following
the vision previously presented in [20]. On the one hand we
shall integrate the OmniVoke framework developed with a
process engine in order to support the orchestration of semanti-
cally annotated Web APIs. Given the native support for RDF,
the resulting orchestration engine shall thus also form the basis
for developing Linked Data applications and mashups easily.
On the other hand, we shall exploit the OmniVoke framework
to provide generic means for exposing data behind legacy Web
APIs as Linked Data by developing an additional layer able to
transform directly HTTP requests for Linked Data resources
into Web APIs invocations.

IX. REFERENCES

[1] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web
APIs on the World Wide Web,” In Proc. of the 8th European Conf. on
Web Services (ECOWS), 2010.

[2] A. Duke, S. Stincic, J. Davies, F. Lecue, N. Mehandjiev, C. Pedrinaci,
M. Maleshkova, J. Domingue, D. Liu, and G. Alvaro,
“Telecommunication mashups using RESTful services,” ServiceWave,
2010

[3] C. Pautasso, “RESTful web service composition with BPEL for REST,”
Data & Knowledge Engineering, vol. 68, issue 9, pp. 851-866, 2009.

[4] R. Fielding, “Architectural styles and the design of network-based
software architectures,” PhD thesis, University of California, Irvine,
2000.

[5] M. J. Hadley, “Web Application Description Language (WADL),”
http://wadl.dev.java.net/, 2006.

[6] K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, and K. Verma, “A
faceted classification based approach to search and rank web APIs,” In
Proceedings of the International Conference on Web Services, 2008.

[7] J. Kopecky, K. Gomadam, and T.Vitvar, “hRESTS: an HTML
microformat for describing RESTful Web services,” In Proc. of the
IEEE/WIC/ACM International Conference on Web Intelligence, 2008.

[8] E. Chinthaka, “REST and web services in WSDL 2.0,”
http://www.ibm.com/developerworks/webservices/library/ws-rest1/,
2007.

[9] A.P. Sheth, K. Gomadam, and J. Lathem, “SA-REST: semantically
interoperable and easier-to-use services and mashups,” IEEE Internet
Computing 11(6) pp. 91–94, 2007.

[10] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Semantic annotation of
Web APIs with SWEET,” 6th Workshop on Scripting and Development
for the Semantic Web at Extended Semantic Web Conference, 2010.

[11] C. Pedrinaci, D. Liu, M. Maleshkova, D. Lambert, J. Kopecky, and J.
Domingue, “iServe: a linked services publishing platform,” Workshop:
Ontology Repositories and Editors for the Semantic Web at 7th
Extended Semantic Web Conference, 2010.

[12] G. Álvaro, I. Martínez, J. Gómez, F. Lecue, C. Pedrinaci, M. Villa, and
G. diMatteo, “Using SPICES for a better service consumption,” Poster at
the 6th Extended Semantic Web Conference, 2010.

[13] D. Lambert, and J. Domingue, “Photorealistic semantic web service
groundings: unifying RESTful and XML-RPC groundings using rules,
with an application to Flickr,” In the 4th International Web Rule
Symposium (RULEML), 2010.

[14] L. Richardson, and S. Ruby, “RESTful web services,” O’Reilly, May
2007.

[15] J. Farrell, and H. Lausen, “Semantic annotations for WSDL and XML
schema,” http://www.w3.org/TR/sawsdl/ (January 2007), W3C
Candidate Recommendation, 26 January 2007.

[16] World-Wide Web Consortium, “HTTP Vocabulary in RDF 1.0,”
Working Draft May 2011, available at http://www.w3.org/TR/HTTP-in-
RDF10/M.

[17] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
Int. Journal on Semantic Web and Information Systems (IJSWIS), 2009.

[18] W. Akhtar, J. Kopecký, T. Krennwallner, A. Polleres, “XSPARQL:
traveling between the XML and RDF worlds and avoiding the XSLT
pilgrimage,” In Proceedings of the 5th European Semantic Web
Conference (ESWC2008). pp. 432– 447. Springer-Verlag, 2008.

[19] Y. Chen, J. Li, Y. Lv, H. Qin, L. Zhang, “DRWSC-to simplify dynamic
invocation for RESTful web services,” ICSES, IEEE Press, 2010.

[20] C. Pedrinaci, and J. Domingue, “Toward the next wave of services:
linked services for the web of data,” Journal of Universal Computer
Science, 2010.

