1,221 research outputs found

    A Framework for XML-based Integration of Data, Visualization and Analysis in a Biomedical Domain

    Get PDF
    Biomedical data are becoming increasingly complex and heterogeneous in nature. The data are stored in distributed information systems, using a variety of data models, and are processed by increasingly more complex tools that analyze and visualize them. We present in this paper our framework for integrating biomedical research data and tools into a unique Web front end. Our framework is applied to the University of Washingtonā€™s Human Brain Project. Speciļ¬cally, we present solutions to four integration tasks: deļ¬nition of complex mappings from relational sources to XML, distributed XQuery processing, generation of heterogeneous output formats, and the integration of heterogeneous data visualization and analysis tools

    Information Integration - the process of integration, evolution and versioning

    Get PDF
    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration of the information sources provides a global information source with all information needed present. All of these information sources also change over time. With each change of the information source, the schema of this source can be changed as well. The data contained in the information source, however, cannot be changed every time, due to the huge amount of data that would have to be converted in order to conform to the most recent schema.\ud In this report we describe the current methods to information integration, evolution and versioning. We distinguish between integration of schemas and integration of the actual data. We also show some key issues when integrating XML data sources

    Heterogeneous biomedical database integration using a hybrid strategy: a p53 cancer research database.

    Get PDF
    Complex problems in life science research give rise to multidisciplinary collaboration, and hence, to the need for heterogeneous database integration. The tumor suppressor p53 is mutated in close to 50% of human cancers, and a small drug-like molecule with the ability to restore native function to cancerous p53 mutants is a long-held medical goal of cancer treatment. The Cancer Research DataBase (CRDB) was designed in support of a project to find such small molecules. As a cancer informatics project, the CRDB involved small molecule data, computational docking results, functional assays, and protein structure data. As an example of the hybrid strategy for data integration, it combined the mediation and data warehousing approaches. This paper uses the CRDB to illustrate the hybrid strategy as a viable approach to heterogeneous data integration in biomedicine, and provides a design method for those considering similar systems. More efficient data sharing implies increased productivity, and, hopefully, improved chances of success in cancer research. (Code and database schemas are freely downloadable, http://www.igb.uci.edu/research/research.html.)

    Mediated data integration and transformation for web service-based software architectures

    Get PDF
    Service-oriented architecture using XML-based web services has been widely accepted by many organisations as the standard infrastructure to integrate heterogeneous and autonomous data sources. As a result, many Web service providers are built up on top of the data sources to share the data by supporting provided and required interfaces and methods of data access in a unified manner. In the context of data integration, problems arise when Web services are assembled to deliver an integrated view of data, adaptable to the specific needs of individual clients and providers. Traditional approaches of data integration and transformation are not suitable to automate the construction of connectors dedicated to connect selected Web services to render integrated and tailored views of data. We propose a declarative approach that addresses the oftenneglected data integration and adaptivity aspects of serviceoriented architecture

    Identification of Design Principles

    Get PDF
    This report identifies those design principles for a (possibly new) query and transformation language for the Web supporting inference that are considered essential. Based upon these design principles an initial strawman is selected. Scenarios for querying the Semantic Web illustrate the design principles and their reflection in the initial strawman, i.e., a first draft of the query language to be designed and implemented by the REWERSE working group I4

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Annotation of SBML Models Through Rule-Based Semantic Integration

    Get PDF
    *Motivation:* The creation of accurate quantitative Systems Biology Markup Language (SBML) models is a time-intensive, manual process often complicated by the many data sources and formats required to annotate even a small and well-scoped model. Ideally, the retrieval and integration of biological knowledge for model annotation should be performed quickly, precisely, and with a minimum of manual effort. Here, we present a method using off-the-shelf semantic web technology which enables this process: the heterogeneous data sources are first syntactically converted into ontologies; these are then aligned to a small domain ontology by applying a rule base. Integrating resources in this way can accommodate multiple formats with different semantics; it provides richly modelled biological knowledge suitable for annotation of SBML models.
*Results:* We demonstrate proof-of-principle for this rule-based mediation with two use cases for SBML model annotation. This was implemented with existing tools, decreasing development time and increasing reusability. This initial work establishes the feasibility of this approach as part of an automated SBML model annotation system.
*Availability:* Detailed information including download and mapping of the ontologies as well as integration results is available from "http://www.cisban.ac.uk/RBM":http://www.cisban.ac.uk/RB

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base
    • ā€¦
    corecore