610 research outputs found

    Query Complexity of Approximate Equilibria in Anonymous Games

    Full text link
    We study the computation of equilibria of anonymous games, via algorithms that may proceed via a sequence of adaptive queries to the game's payoff function, assumed to be unknown initially. The general topic we consider is \emph{query complexity}, that is, how many queries are necessary or sufficient to compute an exact or approximate Nash equilibrium. We show that exact equilibria cannot be found via query-efficient algorithms. We also give an example of a 2-strategy, 3-player anonymous game that does not have any exact Nash equilibrium in rational numbers. However, more positive query-complexity bounds are attainable if either further symmetries of the utility functions are assumed or we focus on approximate equilibria. We investigate four sub-classes of anonymous games previously considered by \cite{bfh09, dp14}. Our main result is a new randomized query-efficient algorithm that finds a O(n1/4)O(n^{-1/4})-approximate Nash equilibrium querying O~(n3/2)\tilde{O}(n^{3/2}) payoffs and runs in time O~(n3/2)\tilde{O}(n^{3/2}). This improves on the running time of pre-existing algorithms for approximate equilibria of anonymous games, and is the first one to obtain an inverse polynomial approximation in poly-time. We also show how this can be utilized as an efficient polynomial-time approximation scheme (PTAS). Furthermore, we prove that Ω(nlogn)\Omega(n \log{n}) payoffs must be queried in order to find any ϵ\epsilon-well-supported Nash equilibrium, even by randomized algorithms

    Query Complexity of Approximate Nash Equilibria

    Full text link
    We study the query complexity of approximate notions of Nash equilibrium in games with a large number of players nn. Our main result states that for nn-player binary-action games and for constant ε\varepsilon, the query complexity of an ε\varepsilon-well-supported Nash equilibrium is exponential in nn. One of the consequences of this result is an exponential lower bound on the rate of convergence of adaptive dynamics to approxiamte Nash equilibrium

    Learning Convex Partitions and Computing Game-theoretic Equilibria from Best Response Queries

    Full text link
    Suppose that an mm-simplex is partitioned into nn convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance ϵ\epsilon from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant mm uses poly(n,log(1ϵ))poly(n, \log \left( \frac{1}{\epsilon} \right)) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant nn uses poly(m,log(1ϵ))poly(m, \log \left( \frac{1}{\epsilon} \right)) queries. We show via Kakutani's fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.Comment: 38 pages, 7 figures, second version strengthens lower bound in Theorem 6, adds footnotes with additional comments and fixes typo

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Well-Supported vs. Approximate Nash Equilibria: Query Complexity of Large Games

    Get PDF
    In this paper we present a generic reduction from the problem of finding an epsilon-well-supported Nash equilibrium (WSNE) to that of finding an Theta(epsilon)-approximate Nash equilibrium (ANE), in large games with n players and a bounded number of strategies for each player. Our reduction complements the existing literature on relations between WSNE and ANE, and can be applied to extend hardness results on WSNE to similar results on ANE. This allows one to focus on WSNE first, which is in general easier to analyze and control in hardness constructions. As an application we prove a 2^{Omega(n/log n)} lower bound on the randomized query complexity of finding an epsilon-ANE in binary-action n-player games, for some constant epsilon>0. This answers an open problem posed by Hart and Nisan and Babichenko, and is very close to the trivial upper bound of 2^n. Previously for WSNE, Babichenko showed a 2^{Omega(n)} lower bound on the randomized query complexity of finding an epsilon-WSNE for some constant epsilon>0. Our result follows directly from combining Babichenko\u27s result and our new reduction from WSNE to ANE
    corecore