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Abstract
In this paper we present a generic reduction from the problem of finding an ε-well-supported
Nash equilibrium (WSNE) to that of finding an Θ(ε)-approximate Nash equilibrium (ANE), in
large games with n players and a bounded number of strategies for each player. Our reduction
complements the existing literature on relations between WSNE and ANE, and can be applied to
extend hardness results on WSNE to similar results on ANE. This allows one to focus on WSNE
first, which is in general easier to analyze and control in hardness constructions.

As an application we prove a 2Ω(n/ logn) lower bound on the randomized query complexity
of finding an ε-ANE in binary-action n-player games, for some constant ε > 0. This answers an
open problem posed by Hart and Nisan [23] and Babichenko [2], and is very close to the trivial
upper bound of 2n. Previously for WSNE, Babichenko [2] showed a 2Ω(n) lower bound on the
randomized query complexity of finding an ε-WSNE for some constant ε > 0. Our result follows
directly from combining [2] and our new reduction from WSNE to ANE.
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1 Introduction

The celebrated theorem of Nash [29] states that every finite game has an equilibrium point.
The solution concept of Nash equilibrium (NE) has been tremendously influential in economics
and social sciences ever since (e.g. see [24]). The complexity and efficient approximation of
NE have been studied intensively during the past decade, and much progress has been made
(e.g., see [27, 1, 6, 26, 34, 13, 9, 16, 28, 14, 4, 10, 32, 7, 12, 15, 33, 11, 5]).

In this paper, we study the randomized query complexity of finding an ε-approximate
Nash equilibrium (ANE) in large games, for some constant ε > 0. Given a game G with
n players and α actions for each player, we index the players by the set [n] = {1, . . . , n}
and index the actions by the set [α] = {1, . . . , α}. Recall that an ε-ANE of G is a mixed
strategy profile x = (x1, . . . ,xn), where each xi ∈ [0, 1]α sums to 1 and is an ε-best response
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of player i to other players’ strategies x−i
1 (see Section 2 for the formal definitions). Since

the notion of ANE is additive, we always assume that payoff functions of games considered
in this paper take values between 0 and 1.

We consider the payoff query model, where an oracle algorithm with unlimited computa-
tional power is given an approximation parameter ε, the number of players n and the number
of actions α in an unknown game G, and needs to find an ε-ANE of G. The algorithm has
oracle access to the payoff functions of players in G: For each round, the algorithm can
adaptively query a pure strategy profile a ∈ [α]n, and receives the payoff of each player with
respect to a. We are interested in the number of queries needed by any randomized oracle
algorithm for this task. Note that a trivial upper bound is αn by simply querying all the
pure strategy profiles.

1.1 Prior Results and Related Work
The query complexity of (approximate) Nash equilibria and related solution concepts has
received considerable attention recently, e.g., see [17, 23, 18, 19, 2, 3, 20, 33]. Below we review
results that are most relevant to our work.

The query complexity of (approximate) correlated equilibria (CE) 2 is well understood.
For the payoff query model considered here, randomized algorithms exist (e.g., regret-mini-
mizing algorithms [22, 21, 8]) for finding an ε-CE using poly(1/ε, α, n) many queries. It
turns out that both randomization and approximation are necessary. [3] showed that every
deterministic algorithm that finds an exact CE requires exponentially many queries in n. [23]
then showed that the same exponential lower bound holds for any deterministic algorithm
for (1/2)-CE and any randomized algorithm for exact CE. For the stronger (expected payoff)
query model, where the oracle returns the expected payoffs of any mixed strategy profile 3,
[30] and [25] obtained a deterministic algorithm that computes an exact CE in polynomial
time using polynomially many queries (both in α and n).

Now turning to the harder, but perhaps more interesting, problem of approximating Nash
equilibria under the payoff query model, the deterministic lower bound of [23] for (1/2)-CE
directly implies the same bound for (1/2)-ANE, because any ε-ANE by definition is an ε-CE
as well. For the randomized query complexity, Babichenko [2] showed that any randomized
algorithm requires 2Ω(n) queries to find an ε-well-supported Nash equilibrium (WSNE), in a
binary-action, n-player game. Recall that an ε-WSNE of a game is a mixed strategy profile
x in which the probability of player i playing action j is positive only when action j is an
ε-best response with respect to x−i. By definition, an ε-WSNE is also an ε-ANE but the
inverse is not true. Following a well-known connection between WSNE and ANE [13] (and
using random samples to approximate expected payoffs), [2] showed that the same 2Ω(n)

bound holds for the randomized query complexity of ε-ANE, but only when ε = O(1/n).
Before our work, the randomized query complexity of ε-ANE in large games remains an open
problem when ε > 0 is a constant.

In this paper we prove a 2Ω(n/ logn) lower bound on the randomized query complexity of
finding an ε-ANE, for some constant ε > 0. Subsequently, Rubinstein [33] showed a tight
2Ω(n) lower bound on the randomized query complexity of ε-ANE, using more sophisticated
machinery in coding theory to remove the logn factor in the exponent. However, our

1 We use x−i := (x1, . . . ,xi−1,xi+1, . . . ,xn) to denote the strategies of players other than i in x.
2 An ε-correlated equilibrium is a probability distribution over pure strategy profiles, such that any player

unilaterally deviating from strategies drawn from it can increase her expected payoff by no more than ε.
3 Such an oracle can be implemented in polynomial time for many classes of succinct games; see [30].
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reduction from ANE to WSNE is much simpler and could be used to obtain hardness results
on ANE in other applications (e.g. [31]). It remains an interesting open question if there is a
more efficient reduction from WSNE to ANE, without paying the extra factor of logn.

1.2 Our Results
For binary-action, n-player games, we show that 2Ω(n/ logn) queries are required for any
randomized algorithm to find an ε-ANE, for some constant ε > 0. To state the result we
use QCp(ANE(n, ε)), for some p > 0, to denote the smallest T such that there exists a
randomized oracle algorithm that uses no more than T queries and outputs an ε-ANE with
probability at least p, given any unknown binary-action, n-player game. Our main result is
the following lower bound on QCp(ANE(n, ε)):

I Theorem 1 (Main). There exist two constants ε > 0 and c > 0 such that

QCp(ANE(n, ε)) = 2Ω(n/ logn), where p = 2−cn/ logn.

Our lower bound answers an open problem posed in [23] and in [2]. Our result shows
that, in terms of their query complexities, finding an ε-ANE is almost as hard as finding
an ε-WSNE in a large game, even for constant ε > 0. It also directly implies the following
corollary regarding the rate of convergence of k-queries dynamics (see [2] for the definition).

I Corollary 2. There exist constants ε, c > 0 such that no k-queries dynamic can converge
to an ε-ANE in 2Ω(n/ logn)/k steps with probability at least 2−cn/logn for every binary-action
and n-player game.

Our proof of Theorem 1 relies on a polynomial-time reduction 4 from the problem of
finding an ε-WSNE to that of finding an (ε′ = Ω(ε))-ANE in a succinct game with a fixed
number of actions. As defined in [30], an α-action succinct game is a pair (n,U), where n is
the number of players and U is a (multi-output) Boolean circuit that, given a pure strategy
profile a ∈ [α]n (encoded in binary), outputs the payoffs of all n players with respect to a.

I Theorem 3. Let ε ≥ 0 and α ∈ N be two constants. The problem of finding an ε-WSNE is
polynomial-time reducible to that of finding an ε/(4α)-ANE, both in α-action succinct games.

1.3 Approximate vs. Well-Supported Nash Equilibria
Let QCp(WSNE(n, ε)) denote the smallest T such that there exists a randomized oracle
algorithm that uses no more than T queries and outputs an ε-WSNE with probability at least
p, given any unknown binary-action, n-player game. Babichenko [2] showed that

I Theorem 4 ([2]). There exist constants ε, c > 0 such that

QCp(WSNE(n, ε)) = 2Ω(n), where p = 2−cn.

Given Theorem 4, the same exponential lower bound follows directly for the randomized
query complexity of ε-ANE, for certain small enough constant ε > 0, if

4 Recall that a polynomial-time reduction from a total search problem A to a total search problem B is a
pair (f, g) of polynomial-time computable functions such that: 1) for every input instance x of A, f(x)
is an input instance of B; and 2) for every solution y to f(x) in B, g(y) is a solution to x in A.

ITCS 2017
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Given oracle access to G and any ε′-ANE of G, where ε′ = c(α) · ε for some constant c > 0
that only depends on α, there is a query-efficient procedure that outputs an ε-WSNE of G.

However, the best such procedure known is the following result from [13]. The paramet-
ers are subsequently improved in [2], where the number of queries needed is also analyzed:

Given oracle access to G and any ε2/(16n)-ANE of G, there is a procedure that outputs an
ε-WSNE of G using poly(α, n, 1/ε) payoff queries, where n denotes the number of players.

The procedure is very natural: For each player, reallocate probabilities on actions with a
relatively low expected payoff to a best-response action. Using Theorem 4, such a procedure
implies the same exponential lower bound for ε-ANE [2] but only when ε is O(1/n).

Before our work, no better procedure is known. By definition, an ANE poses a slightly
weaker condition on each player compared to that of a WSNE. More specifically, given the
mixed strategies of other players x−i, for an ε-WSNE, xi must be supported on actions
that are ε-best responses to x−i, while in an ε-ANE, xi can be any mixed strategy that
yields an overall ε-best response to x−i. For example, xi may allocate 1− ε probability on
best-response actions while putting ε probability on any other actions. This makes WSNE
much easier to analyze and control in hardness reductions, which is why it played a critical
role in characterizing the complexity of Nash equilibria, starting with the work of [13], later
in [9] and subsequent works. The reason that Babichenko’s lower bound (Theorem 4) does
not hold for ε-ANE is that, if every player places a tiny probability on a suboptimal action,
in aggregate there are always some players who play suboptimally, which makes the outcome
quite unpredictable.

1.4 Our Approach
We prove Theorem 1 via a query-efficient reduction from the problem of finding an ε-WSNE
to that of finding an Θ(ε)-ANE:

Given any α-action, n-player game G and any parameter ε > 0, one can define a new
α-action game G′ with a slightly larger set of O(α2 log(n/ε) · n) players such that

1. To answer each payoff query on G′, it suffices to make αn payoff queries on G;
2. There is a procedure that, given any ε-ANE x of G′, outputs a (4αε)-WSNE y of G,

with no payoff oracle access to G or G′.

Our reduction is presented in Section 3. Theorem 1 then follows immediately from the
lower bound of [2] on the randomized query complexity of WSNE (in Theorem 4). Theorem 3
follows from the fact that: 1) the payoff entries of G′ are easy to compute; and 2) the procedure
to obtain y from x runs in time polynomial in the length of the binary representation of x,
when the number of actions α is bounded. We first give the intuition behind our reduction.

Recall that in the procedure of [13] and [2], an ε-WSNE is obtained from an ε′-ANE with
ε′ = ε2/(16n) by reallocating probabilities on actions with relatively low expected payoff
(formally, actions with payoff Ω(ε) lower than the best response) to best-response actions.
From the definition of ANE, no player can have probability more than O(ε′/ε) = O(ε/n) on
actions with low payoff in any ε′-ANE. Thus, the procedure changes the expected payoff of
each player on each action by at most n ·O(ε/n) = O(ε) since it changes the mixed strategy
of each player by O(ε/n). It follows that the new mixed strategy profile is an ε-WSNE. The
blow up of a factor of n from ε′ to ε is precisely due to the cumulative impact on a player’s
expected payoff imposed by small changes to all other players’ mixed strategies.
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Our reduction from WSNE to ANE overcomes this obstacle by constructing from G a
new and slightly larger game G′ with O(n logn) players, where each player i in the original
n-player game G is simulated by a group of O(logn) players indexed by (i, j) in the new
game G′, and we use the majority strategy in group i to decide the strategy of player i in
the original game. The payoff function of the player (i, j) in G′ is exactly the same as that of
player i in G, but is now defined with respect to the aggregate action (by plurality voting) of
each group of players in G′.

We show that an ε-WSNE of G can be recovered from any ε′-ANE of G′, where ε′ = Ω(ε), by
(1) computing the distribution of the majority action of each group and (2) truncating the
small entries in each distribution. Intuitively, by focusing on the aggregate behavior of each
group of O(logn) independent players in G′, we make sure that the mixed strategies obtained
from Step (1) are highly concentrated on actions with close-to-best expected payoffs, and
actions with low payoffs can only appear as the majority action of a group with probability
O(ε/n). Therefore, in Step (2) we only need to truncate entries with probability O(ε/n),
and the remaining positive entries would correspond to close-to-best actions. We can also
control the effect of this truncation at the same time, because when the number of actions is
bounded, the aggregate behavior of each group changes by at most O(ε/n), which allows us
to show that the result is an ε-WSNE of the original game G.

1.5 Organization
The rest of the paper is organized as follows. We first give formal definitions of ANE and
WSNE in Section 2. In Section 3 we present the reduction from WSNE to ANE for large
games, and then use it to prove Theorem 1 and Theorem 3 in Section 4.

2 Preliminaries

A game G is a triple (n, α,u), where n is the number of players, α is the number of
actions for each player, and u = (u1, . . . , un) are the payoff functions, one for each player.
We always use [n] = {1, . . . , n} to denote the set of players and [α] = {1, . . . , α} to denote
the set of actions for each player. Since we are interested in additive approximations, each
ui maps [α]n to [0, 1].

Let ∆α denote the set of probability distributions over [α]. A mixed strategy profile of
G is then a tuple x = (x1, . . . ,xn) of mixed strategies, where xi ∈ ∆α denotes the mixed
strategy of player i. Given x, we use x−i to denote the tuple of mixed strategies of all players
other than i. As a shorthand, we write ui(x) to denote the expected payoff of player i with
respect to x, and write ui(a,x−i) to denote the expected payoff of player i playing action
a ∈

[
α
]
with respect to x−i:

ui(x) = E
a∼x

[ui(a)] and ui(a,x) = E
b∼x−i

[
ui(a, b)

]
.

Next we define approximate and well-supported Nash equilibria.

I Definition 5. Given ε > 0, an ε-approximate Nash equilibrium of an α-action and n-player
game G(n, α,u) is a mixed strategy profile x = (x1, . . . ,xn) such that for every player i ∈ [n]:

ui(x) ≥ ui(a′,x−i)− ε, for all a′ ∈ [α].

I Definition 6. Given ε > 0, an ε-well-supported Nash equilibrium of G(n, α,u) is a mixed
strategy profile x = (x1, . . . ,xn) such that for all i ∈ [n] and action a in the support of xi:

ui(a,x−i) ≥ ui(a′,x−i)− ε, for all a′ ∈ [α].

ITCS 2017
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Finally, we give a formal definition of succinct games [30].

I Definition 7. An α-action succinct game is a pair (n,U), where n is the number of players
and U is a (multi-output) Boolean circuit that, given any pure strategy profile a ∈ [α]n
(encoded in binary), outputs the payoffs of all n players with respect to a in the game. Note
that the input size of (n,U) is the size of the circuit U .

3 A Reduction from WSNE to ANE

Given an α-action, n-player game G(n, α,u) and a parameter ε ∈ (0, 1), we now define a
new game G′(sn, α,u′) with sn players, where s = 2α2 · dln(n/ε)e . We prove that given an
ε-ANE x of the new game G′, one can compute a (4αε)-WSNE y of G without making any
payoff queries to G or G′.

For each player i ∈ [n] in G, we introduce a group of s players in G′, indexed by (i, j) with
j ∈ [s], and use u′i,j to denote the payoff function of player (i, j). Given any pure strategy
profile a = (ai,j : i ∈ [n], j ∈ [s]), we define the payoff u′i,j(a) of player (i, j) as follows. First,
for each i ∈ [n], let āi ∈ [α] denote the majority action played by the i-th group (players (i, j),
j ∈ [s]) in the pure strategy profile a (break ties by choosing the action with the smallest
index). Write ā = (ā1, . . . , ān). Next, the payoff of player (i, j) under a is defined as

u′i,j(a) = ui(ai,j , ā−i). (1)

This completes the definition of G′. The next lemma follows from the definition.

I Lemma 8. To answer a payoff query on G′, it suffices to make αn queries on G.

Proof. By the definition of G′, u′i,j(a)’s for all (i, j), are determined by(
ui(a′, ā−i) : i ∈ [n], a′ ∈ [α]

)
,

for which αn payoff queries on G suffice. J

We conclude our reduction by proving the following lemma:

I Lemma 9. Given any ε-ANE x of G′, one can compute a (4αε)-WSNE y of G without
making any payoff queries on G or G′. Moreover, when α is a constant, the computation
of y from x can be done in time polynomial in the number of bits needed in the binary
representation of x and 1/ε.

Proof. Let x = (xi,j) be an ε-ANE of G′. For each group i and action k ∈ [α], let

x̄i,k = Pr
a∼x

[āi = k] . (2)

Recall that āi is the majority action played by players (i, j), j ∈ [s], in the pure strategy
profile a. By definition, each x̄i = (x̄i,1, . . . , x̄i,α) is a probability distribution over [α].

Next, we define a mixed strategy y = (y1, . . . ,yn) of G, and show that y is a (4αε)-WSNE.
We zero out entries smaller than ε/n in x̄i and rescale it, formally

ci,k =
{

x̄i,k if x̄i,k ≤ ε/n
0 otherwise

and yi,k = x̄i,k − ci,k
1−

∑
j∈[α] ci,k

. (3)

It is easy to verify that yi = (yi,1, . . . , yi,α) is indeed a probability distribution over [α].



X. Chen, Y. Cheng, and B. Tang 57:7

Now assume for contradiction that y is not a (4αε)-WSNE, i.e. for some player i ∈ [n]
there exists an action ` ∈ [α] such that yi,` > 0 but

max
k∈[α]

ui(k,y−i) > ui(`,y−i) + 4αε. (4)

But note that, the total variation distance between x̄j and yj for each j ∈ [n] is at most
αε/n. So by coupling and applying union bound, we have that∣∣ui(k, x̄−i)− ui(k,y−i)∣∣ ≤ (n− 1) · (αε/n) < αε, for all k ∈ [α]. (5)

It then follows from (4) and (5) that

max
k∈[α]

ui(k, x̄−i) > ui(`, x̄−i) + 2αε. (6)

By the definition (1) of the payoff function u′i,j , we have

u′i,j(k,x−i) = ui(k, x̄−i), for all j ∈ [s] and k ∈ [α]. (7)

Combining (6) and (7), we have that for every player (i, j), j ∈ [s]:

max
k∈[α]

u′i,j(k,x−i)− u′i,j(`,x−i) ≥ 2αε.

Since x is an ε-ANE of G′, xi,j,` ≤ 1/(2α). By Hoeffding bound and our choice of s,

x̄i,` = Pr
[
` is the majority action among players (i, j), j ∈ [s]

]
≤ Pr

[
the number of players (i, j) playing ` is at least s/α

]
≤ e−s/(2α

2) ≤ ε/n.

By (3), this implies that yi,` = 0, which contradicts our assumption and proves that y is
indeed a (4αε)-WSNE of G.

It is clear that from the definition of y, the computation of y from x does not require
any payoff queries. For the running time, when α is a constant, to compute x̄i,k in (2) one
needs to go through

αs = α2α2·dln(n/ε)e = (n/ε)O(1)

many pure strategy profiles of players (i, j), j ∈ [s]. Therefore y can be computed in time
polynomial in the number of bits needed in the binary representation of x and 1/ε. J

4 Proofs of Theorems 1 and 3

We use our query-efficient reduction to prove Theorem 1 and Theorem 3.

Proof of Theorem 1. By Theorem 4 there exist constants ε′, c′ > 0 such that

QCp′(WSNE(n′, ε)) = 2Ω(n′), where p′ = 2−c
′n′ .

Let n = 8n′ · dln(n′/ε′)e and ε = 8ε′. It follows from Lemma 8 and Lemma 9 that

QCp′(ANE(n, ε)) ≥ QCp′(WSNE(n′, ε)) = 2Ω(n′).

The theorem then follows from n′ = Ω(n/ logn). J

Proof of Theorem 3. Using Lemma 9, it suffices to prove that, given any α-action succinct
game G = (n,U), we can construct in polynomial time a Boolean circuit U ′ that implements
the payoff functions of players in G′. This can be done by following the definition of G′ in
the previous section since the payoffs of a pure strategy profile a in G′ only depends (in a
straight-forward fashion) on the payoffs of αn = O(n) easy-to-compute profiles of G. J

ITCS 2017



57:8 Query Complexity of Large Games

References
1 T. Abbott, D. Kane, and P. Valiant. On the complexity of two-player win-lose games. In

Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
pages 113–122, 2005.

2 Y. Babichenko. Query complexity of approximate Nash equilibria. In Proceedings of the
46th Annual ACM Symposium on Theory of Computing, pages 535–544, 2014.

3 Y. Babichenko and S. Barman. Query complexity of correlated equilibrium. ACM Trans-
actions on Economics and Computation, 3(4):22:1–22:9, 2015.

4 Y. Babichenko, C.H. Papadimitriou, and A. Rubinstein. Can almost everybody be almost
happy? PCP for PPAD and the inapproximability of Nash. In Proceedings of the 7th
Annual Innovations in Theoretical Computer Science, 2015.

5 Y. Babichenko and A. Rubinstein. Communication complexity of approximate Nash equi-
libria. ArXiv e-prints, 2016.

6 I. Bárány, S. Vempala, and A. Vetta. Nash equilibria in random games. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of Computer Science, pages 123–131,
2005.

7 S. Barman. Approximating Nash equilibria and dense bipartite subgraphs via an approx-
imate version of Caratheodory’s theorem. In Proceedings of the 47th Annual ACM on
Symposium on Theory of Computing, pages 361–369, 2015.

8 A. Blum and Y. Monsour. From External to Internal Regret. University of Chicago Press,
2007.

9 X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player Nash
equilibria. Journal of the ACM, 56(3):1–57, 2009.

10 X. Chen, D. Durfee, and A. Orfanou. On the complexity of Nash equilibria in anonymous
games. In Proceedings of the 46th ACM Symposium on Theory of Computing, pages 381–
390, 2015.

11 Y. Cheng, I. Diakonikolas, and A. Stewart. Playing anonymous games using simple
strategies. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2017. To appear.

12 C. Daskalakis, A. De, G. Kamath, and C. Tzamos. A size-free CLT for Poisson multinomials
and its applications. In Proceedings of the 48th Annual ACM Symposium on Theory of
Computing, pages 1074–1086, 2016.

13 C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a
Nash equilibrium. SIAM Journal on Computing, 39(1), 2009.

14 C. Daskalakis and C.H. Papadimitriou. Approximate Nash equilibria in anonymous games.
Journal of Economic Theory, 156:207–245, 2015.

15 I. Diakonikolas, D.M. Kane, and A. Stewart. The Fourier transform of Poisson multinomial
distributions and its algorithmic applications. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing, pages 1060–1073, 2016.

16 K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed
points. SIAM Journal on Computing, 39(6):2531–2597, 2010.

17 J. Fearnley, M. Gairing, P. Goldberg, and R. Savani. Learning equilibria of games via
payoff queries. In Proceedings of the 14th ACM Conference on Electronic Commerce, pages
397–414, 2013.

18 J. Fearnley and R. Savani. Finding approximate Nash equilibria of bimatrix games via
payoff queries. In Proceedings of the 15th ACM Conference on Economics and Computation,
pages 657–674, 2014.

19 P.W. Goldberg and A. Roth. Bounds for the query complexity of approximate equilibria. In
Proceedings of the 15th ACM Conference on Economics and Computation, pages 639–656,
2014.



X. Chen, Y. Cheng, and B. Tang 57:9

20 P.W. Goldberg and S. Turchetta. Query complexity of approximate equilibria in anonymous
games. In Proceedings of the 11th Conference on Web and Internet Economics, 2015.

21 S. Hart. Adaptive heuristics. Econometrica, 73(5):1401–1430, 2005.
22 S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.

Econometrica, 68(5):1127–1150, 2000.
23 S. Hart and N. Nisan. The query complexity of correlated equilibria. In Proceedings of the

6th International Symposium on Algorithmic Game Theory, 2013.
24 C.A. Holt and A.E. Roth. The Nash equilibrium: A perspective. Proceedings of the National

Academy of Sciences, 101(12):3999–4002, 2004.
25 A.X. Jiang and K. Leyton-Brown. Polynomial-time computation of exact correlated equi-

librium in compact games. In Proceedings of the 12th ACM Conference on Electronic
Commerce, 2011.

26 R. Kannan and T. Theobald. Games of fixed rank: A hierarchy of bimatrix games. In
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1124–
1132, 2007.

27 R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In
Proceedings of the 4th ACM Conference on Electronic Commerce, pages 36–41, 2003.

28 R. Mehta. Constant rank bimatrix games are PPAD-hard. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 545–554, 2014.

29 J.F. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36(1):48–49, 1950.

30 C.H. Papadimitriou and T. Roughgarden. Computing correlated equilibria in multi-player
games. Journal of the ACM, 55(3), 2008.

31 T. Roughgarden and O. Weinstein. On the communication complexity of approximate fixed
points. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science, pages 229–238, 2016.

32 A. Rubinstein. Inapproximability of Nash equilibrium. In Proceedings of the 46th ACM
Symposium on Theory of Computing, pages 409–418, 2015.

33 A. Rubinstein. Settling the complexity of computing approximate two-player Nash equi-
libria. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science, pages 258–265, 2016.

34 H. Tsaknakis and P.G. Spirakis. An optimization approach for approximate Nash equilibria.
In Proceedings of the 3rd International Workshop on Internet and Network Economics,
pages 42–56, 2007.

ITCS 2017


	Introduction
	Prior Results and Related Work
	Our Results
	Approximate vs. Well-Supported Nash Equilibria
	Our Approach
	Organization

	Preliminaries
	A Reduction from WSNE to ANE
	Proofs of Theorems 1 and 3

