13,607 research outputs found

    Extended RDF: Computability and Complexity Issues

    Get PDF
    ERDF stable model semantics is a recently proposed semantics for ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs. In this paper, we elaborate on the computability and complexity issues of the ERDF stable model semantics. Based on the undecidability result of ERDF stable model semantics, decidability under this semantics cannot be achieved, unless ERDF ontologies of restricted syntax are considered. Therefore, we propose a slightly modified semantics for ERDF ontologies, called ERDF #n- stable model semantics. We show that entailment under this semantics is, in general, decidable and also extends RDFS entailment. Equivalence statements between the two semantics are provided. Additionally, we provide algorithms that compute the ERDF #n-stable models of syntax-restricted and general ERDF ontologies. Further, we provide complexity results for the ERDF #nstable model semantics on syntax-restricted and general ERDF ontologies. Finally, we provide complexity results for the ERDF stable model semantics on syntax-restricted ERDF ontologies

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    A Robust Logical and Computational Characterisation of Peer-to-Peer Database Systems

    Get PDF
    In this paper we give a robust logical and computational characterisation of peer-to-peer (p2p) database systems. We first define a precise model-theoretic semantics of a p2p system, which allows for local inconsistency handling. We then characterise the general computational properties for the problem of answering queries to such a p2p system. Finally, we devise tight complexity bounds and distributed procedures for the problem of answering queries in few relevant special cases

    Twelve Theses on Reactive Rules for the Web

    Get PDF
    Reactivity, the ability to detect events and respond to them automatically through reactive programs, is a key requirement in many present-day information systems. Work on Web Services re ects the need for support of reactivity on a higher abstraction level than just message exchange by HTTP. This article presents the composite event query facilities of the reactive rule-based programming language XChange. Composite events are important in the dynamic world of the Web where applications, or Web Services, that have not been engineered together are composed and have to cooperate by exchanging event messages

    Mobile Phone Text Processing and Question-Answering

    Get PDF
    Mobile phone text messaging between mobile users and information services is a growing area of Information Systems. Users may require the service to provide an answer to queries, or may, in wikistyle, want to contribute to the service by texting in some information within the service’s domain of discourse. Given the volume of such messaging it is essential to do the processing through an automated service. Further, in the case of repeated use of the service, the quality of such a response has the potential to benefit from a dynamic user profile that the service can build up from previous texts of the same user. This project will investigate the potential for creating such intelligent mobile phone services and aims to produce a computational model to enable their efficient implementation. To make the project feasible, the scope of the automated service is considered to lie within a limited domain of, for example, information about entertainment within a specific town centre. The project will assume the existence of a model of objects within the domain of discourse, hence allowing the analysis of texts within the context of a user model and a domain model. Hence, the project will involve the subject areas of natural language processing, language engineering, machine learning, knowledge extraction, and ontological engineering

    How Many and What Types of SPARQL Queries can be Answered through Zero-Knowledge Link Traversal?

    Full text link
    The current de-facto way to query the Web of Data is through the SPARQL protocol, where a client sends queries to a server through a SPARQL endpoint. Contrary to an HTTP server, providing and maintaining a robust and reliable endpoint requires a significant effort that not all publishers are willing or able to make. An alternative query evaluation method is through link traversal, where a query is answered by dereferencing online web resources (URIs) at real time. While several approaches for such a lookup-based query evaluation method have been proposed, there exists no analysis of the types (patterns) of queries that can be directly answered on the live Web, without accessing local or remote endpoints and without a-priori knowledge of available data sources. In this paper, we first provide a method for checking if a SPARQL query (to be evaluated on a SPARQL endpoint) can be answered through zero-knowledge link traversal (without accessing the endpoint), and analyse a large corpus of real SPARQL query logs for finding the frequency and distribution of answerable and non-answerable query patterns. Subsequently, we provide an algorithm for transforming answerable queries to SPARQL-LD queries that bypass the endpoints. We report experimental results about the efficiency of the transformed queries and discuss the benefits and the limitations of this query evaluation method.Comment: Preprint of paper accepted for publication in the 34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019
    • …
    corecore