
Querying Composite Events for Reactivity on

the Web

François Bry, Michael Eckert, and Paula-Lavinia Pătrânjan

University of Munich, Institute for Informatics
Oettingenstr. 67, D-80538 München

{bry, eckert, patranjan}@pms.ifi.lmu.de
http://www.pms.ifi.lmu.de

Abstract. Reactivity, the ability to detect events and respond to them
automatically through reactive programs, is a key requirement in many
present-day information systems. Work on Web Services reflects the need
for support of reactivity on a higher abstraction level than just message
exchange by HTTP. This article presents the composite event query facil-
ities of the reactive rule-based programming language XChange. Com-
posite events are important in the dynamic world of the Web where
applications, or Web Services, that have not been engineered together
are composed and have to cooperate by exchanging event messages.

1 Introduction

Reactivity, the ability to detect events or situations of interest and respond to
them automatically through reactive programs, is a key requirement in many
present-day information systems. The World Wide Web, undoubtedly by far the
largest information system, has become a basis for many applications requir-
ing reactivity, e.g., in commerce, business-to-business, logistics, e-Learning, and
information systems for biological data.

It is natural to represent events that are exchanged between Web sites as
XML messages. The Web’s communication protocol, HTTP, provides an infras-
tructure for exchanging events or messages. Still, until recently the Web has been
commonly perceived as a passive collection of HTML and XML documents; re-
activity had to be implemented largely “by hand” (e.g., CGI scripts) and was
limited to single Web sites (e.g., filling out forms on a shopping Web site).
There is little support for reactivity on a higher abstraction level, e.g., in the
form of reactive programming languages. Research and standardization in the
Web Services area reflect the need to overcome what one might call the Web’s
passiveness.

XChange [1–3] is a rule-based reactive language for programming reactive be-
havior and distributed applications on the Web. Amongst other reactive behavior
it aims at easing implementation and composition of Web Services. XChange is
based on Event-Condition-Action rules (ECA rules). These specify that some
action should be performed in response to some (class of) events (or situations
of interest), provided that the condition holds.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/18263006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bry, Eckert, and Pătrânjan

To specify situations that require a reaction, XChange provides event queries,
which describe classes of events. But event queries do more: they also extract and
make available data from the events’ XML representation that is relevant for the
particular reaction. Considering a tourism application, it is not only important
to detect when a flight has been canceled, but also to know its flight number
and similar information in the reaction to the event.

Often, the situations are not given by a single atomic event, but a temporal
combination of events, leading to the notion of composite events and composite

event queries. Support for composite events is very important for the Web: In
a carefully developed application, designers have the freedom to choose events
according to their goal. They can thus often do with only atomic events by
representing events which might by conceptually composite with a single atomic
event. In the Web’s open world however many different applications which have
not been engineered together are integrated and have to cooperate. Situations
that require a reaction might not have been considered in the original design of
the applications and thus have to be inferred from many atomic events.

Consider again a tourism scenario: an application might want to detect situ-
ations where a traveler has already checked out of his hotel (first atomic event)
but his flight has been canceled (second atomic event). On the Web the con-
stituent events are emitted from independent Web sites (the airline and the
hotel), which have not designed together. Hence an application has to infer the
composite event from the given atomic events.

Similar motivating scenarios for composite events are filtering of stock trade
reports, e.g., “recognize situations where the NASDAQ rises 10 points and the
Dow Jones falls 5 points”, or work-flow-management, e.g., “a student has fulfilled
her degree-requirements if she has handed in her thesis and taken the final exams
(which in turn can be a composite event).”

The remainder of this paper is structured as follows. We first give a short
overview of XChange (Sect. 2), and then explain the event query language in
detail. We introduce the syntax and intuitive meaning of its language constructs
(Sect. 3), before turning to the formal semantics (Sect. 4) and the event query
evaluation (Sect. 5). Conclusions (Sect. 6) complete this article.

2 XChange: ECA Rule-based Reactivity

XChange programs consist of ECA rules running locally at some Web site. In
reaction to events, they can query and modify local and remote XML data and
raise new events, which are sent as XML messages to other remote Web sites (in
a push-manner).

XChange ECA rules have the general form Action – Event Query – Web

Query. They specify to automatically execute the action (an update to a Web
resource or rasing of a new event) as response to a situation specified by the
event query (a query over the stream of incoming event messages), provided the
Web query (a query to persistent Web data) evaluates successfully.

Querying Composite Events for Reactivity on the Web 3

<flight-cancellation>
<number> UA917 </number>

<date> 2005-02-20 </date>
</flight-cancellation>

flight-cancellation [

number ["UA917"]
date ["2005-02-20"]

]

flight-cancellation {{

number [var N]
}}

Fig. 1. An event message in XML and term representation, and an atomic event query

Atomic event queries (queries to a single incoming event message) and Web
queries rely on the query language Xcerpt [4]. Also, update specifications are an
extension to Xcerpt. Xcerpt queries describe patterns of the queried XML data
and are represented in a term-like syntax. Fig. 1 depicts a small XML document,
its term representation, and a query term against this data. In the term syntax,
square brackets indicate that the order of child elements is significant, while curly
braces indicate it isn’t. Double braces or brackets indicate a partial match, i.e.,
other children may exists, while single braces or brackets indicate a total match,
i.e., no other children may exist. Queries can contain free variables (indicated
by the keyword var) which are bound during the evaluation, which is based on
a novel method called Simulation Unification [5].

XChange can provide the following benefits over the conventional approach
of using imperative programming languages to implement Web Services:

– ECA rules have a highly declarative nature, allow programming on a high
level of abstraction, and are easy to analyze for both humans and machines
(see [6], for example).

– Event queries, Web queries, and updates follow the same paradigm of speci-
fying patterns for XML data, thus making XChange an elegant, easy to learn
language.

– Both atomic and composite events can be detected, the latter being an im-
portant requirement in composing an application from different Web Services
(cf. Sect. 1) and relevant data extracted.

– Having an XML query language embedded in the condition part allows to
access Web resources in a natural way. Also Xcerpt’s deductive rules allowing
to reason with data and to query not only pure XML but also RDF [7].

– A typical reaction to some event is to update some Web resource; XChange
provides an integrated XML update language for doing this.

– ECA rules of XChange enforce a clear separation of persistent data (Web
resources with URIs) and volatile data (event messages, no URIs). The dis-
tinction is important for a programmer: the former relates to state, while
the latter reflects changes in state.

3 Event Queries and Composite Events

Event queries detect atomic events (receptions of single event messages) and
composite events (temporal patterns in the reception of event messages) in the
stream of incoming events and extract data in the form of variables bindings
from them.

4 Bry, Eckert, and Pătrânjan

3.1 Atomic Events and Atomic Event Queries

Atomic events are received by XChange-aware Web sites as XML messages.
Typically these messages will follow some standardized envelope format (e.g.,
SOAP format) providing information like the sender or the reception time of the
message; in this paper we skip such details for the sake of brevity.

Atomic event queries are query terms (as introduced in the previous section).
On reception of an incoming event message, XChange tries to simulation unify
the query term and the message. If successful, this results in a set of substitutions
for the free variables in the query.

3.2 Composite Event Queries

Composite event queries are built from atomic (and smaller composite) event
queries (EQ) by means of composition operators and temporal restrictions. They
describe a pattern of events that have to happen in a some time frame. Composite
events are sequences of atomic events that answer a given composite event query;
they happen over a period of time and thus have a starting and ending time.

Temporal Restrictions limit the time frame in which events are considered rel-
evant. XChange supports absolute and relative temporal restrictions. Absolute
restrictions are introduced by the keyword in and a time interval specifica-
tion, e.g., [1978-02-20 .. 2005-02-20] following an (atomic or composite)
event query. Answers to the event query are only considered if they happen in
the specified time interval. Relative restrictions are introduced by the keyword
within and a specification of a duration, e.g., 365 days. They limit the duration
(difference between starting and ending time) of answers to the event query.

XChange requires every (legal) composite event query to be accompanied
by a temporal restriction specification. This makes it possible to release each
(atomic or semi-composed composite) event at each Web site after a finite time.
Thus, language design enforces the requirement of a bounded event lifespan and
the clear distinction persistent vs. volatile data.

Composition Operators express a temporal pattern of atomic event occurrences.
XChange provides a rich set of such composition operators, a selection of which
is presented here.

Conjunctions of event queries detect instances for each specified event query
regardless of their order. They have the form: and { EQ1, . . ., EQn }.

Inclusive Disjunctions of event queries detect instances of any of the specified
event queries. They have the form: or { EQ1, . . ., EQn }.

Temporally Ordered Conjunctions of event queries detect successive instances
of events: andthen [EQ1, . . . , EQn] and andthen [[EQ1, . . . , EQn]].

A total specification (using []) expresses that only instances of the EQi (i =
1, . . . , n) are of interest and are included in the answer. Instances of other events
that possibly have occurred between the instances of the EQi are not of interest
and thus are not contained in the answer. In contrast, a partial specification

Querying Composite Events for Reactivity on the Web 5

(using [[]]) expresses interest in all incoming events that have been received
between the instances of the EQi. Thus, all these instances are contained in the
event query’s answer.

Example. The composite event
query on the right side detects noti-
fications of flight cancellations that
are followed, within two hours of
reception, by notifications that the
airline is not granting accommoda-
tion. Note the use of the variable P

to make sure that the notifications
apply to the same passenger.

andthen [

flight-cancellation {{

number { var N },

passenger { var P }

}},

no-accommodation {{

passenger { var P },

}}

] within 2 hours

Event Exclusions enable the monitoring of the non-occurrence of (atomic
or composite) event query instances during an absolute time interval or the
answer to another composite event query: without EQ during CompositeEQ or
without EQ during [s .. t].

Other operators include n times EQ to detect n occurrences of the same
event, and m of {EQ1, ... EQn} to detect occurrences of m instances in a
given set of event queries.

4 Semantics of Event Queries

Comparisons of (composite) event query languages such as [8] show that inter-
pretation of similar language constructs can vary considerably. To avoid misin-
terpretations, clear semantics are indispensable.

The notion of answers to event queries is twofold. An answer to some query
consists of (1) a sequence s of atomic events that allowed a successful evaluation
of the query on the one hand, and (2) a set of variable substitutions Σ on
the other hand. Variable substitutions can influence the reaction to some event
specified in the remaining part of an XChange ECA rule. The sequence of events
allows for events not being specified in the query to become a part of the answer
(e.g., a partial andthen[[EQ1, EQ2]] returns not only answers to EQ1 and
EQ2 but also any atomic events in-between) and gives answer closedness, i.e.,
the result of a query can be in turn queried by further queries.

We define a declarative semantics for XChange’s event query language similar
to a model-theoretic entailment relation. Unlike the traditional binary entailment
relation |=, which relates models to queries (under some environment giving bind-
ings for the free variables), however, our answering relation has to be ternary: it
relates the stream of incoming event messages (which corresponds to a model),
queries, and answers (as discussed above these include the “environment” Σ).
The reason for the need of answers is that in our event query language answers
cannot be simply obtained from queries by applying the variables substitutions
to them, since they may contain events not having a corresponding constituent
query. The answering relation is defined by induction on the structure of a query.

6 Bry, Eckert, and Pătrânjan

This allows easy recursive evaluation of composite (event) queries, where each
constituent query can be evaluated independently of the others.

We now give a formal account of the declarative semantics.

Answers An answer to an event query q is a tuple (s, Σ). It consists of a (finite)
sequence s of atomic events happening in a time interval [b..e] that allowed a
successful evaluation of q and a corresponding set of substitutions Σ for the
free variables of q. We write s = 〈a1, . . . an〉

e

b to indicate that s begins at time
point begin(s) := b, ends at end(s) := e, and contains the atomic events ai = dri

i ,
which are data terms di received at time point ri. We have b ≤ r1 < . . . < rn ≤ e;
note that b < r1 and rn < e are possible.

Observe that the answer is an event sequence, and it is possible for instances
of events not specified in the query to be returned. For example, a partial match
andthen[[a,b]] returns not only event instances of a and b, but also all atomic
events happening between them. This cannot be captured with substitutions
alone.

Substitution Sets The substitution set Σ contains substitutions σ (partial func-
tions) assigning variables to data terms. Assuming a standardisation of variable
names, let V be the set of all free variables in a query having at least one defin-
ing occurrence. A variable’s occurrence is defining, if it is part of a non-negated
sub-query, i.e. does not occur inside a without-construct, and thus can be as-
signed a value in the query evaluation. Let Σ |V denote the restriction of all
substitutions σ in Σ to V . For triggering rules in XChange, we are interested
only in the maximal substitution sets.

Event Stream For a given event query q, all atomic events received after its
registration form a stream of incoming events (or, event stream) E . Events prior
to a query’s registration are not considered, as this might require an unbounded
event life-span. Thus, since it fits better with the incremental event query eval-
uation (described in the next section), we prefer the term “stream” to the term
“history” sometimes used in related work. Formally, E is an event sequence (as
s above) beginning at the query’s registration time.

Answering-Relation Semantics of event queries are defined as a ternary relation
between event queries q, answers (s, Σ), and event stream E . We write q /E (s, Σ)
to indicate that q is answered by (s, Σ) under the event stream E . Definition of
/E is by induction on q, and we give only a few exemplary cases here.

q is an atomic event query: q /E (s, Σ) if and only if (1) s = 〈dr〉rr, (2) dr is an
atomic event in the stream E , (3) the data term d simulation unifies (“matches”)
with the query q under all substitutions in Σ. For a formal account of (3) see
work on Xcerpt [9].

q = and[q1, . . . , qn]: q /E (s, Σ) iff there exist event sequences s1, . . . sn such
that (1) qi /E (si, Σ) for all 1 ≤ i ≤ n, (2) s comprises all event sequences
s1, . . . sn (denoted s =

⋃
1≤i≤n si).

Querying Composite Events for Reactivity on the Web 7

q = andthen[[q1, q2]]: q /E (s, Σ) iff there exist event sequences s1, s′, and s2

such that (1) qi /E (si, Σ) for i = 1, 2, (2) s = s1∪s′∪s2, (3) end(s1) ≤ begin(s2),
and (4) s′ is a continuous extract of E (denoted s′ @ E) with (5) begin(s′) =
end(s1) and end(s′) = begin(s2). The event sequence s′ serves to collect all
atomic events happening “between” the answers to q1 and q2 as required by the
partial matching [[]]. The n-ary variant of this binary andthen is defined by
rewriting the n-ary case associatively to nested binary operators.

q = without {q1} during {q2}: q /E (s, Σ) iff (1) q2 /E (s, Σ), (2) there is
no answer (s1, Σ1) to q1 (q1 /E (s1, Σ1)) such that Σ contains substitutions for
the variables V with defining occurrences that are also in Σ1 (Σ |V ⊆ Σ1 |V).

q = q′ within w: q /E (s, Σ) iff (1) q′ /E (s, Σ) and (2) end(s)−begin(s) ≤ w.

Discussion Our answering relation approach to semantics allows the use of ad-
vanced features in XChange’s event query language, such as free variables in
queries, event negation, and partial matches. Note that due to the latter two,
approaches where answers are generated by a simple application of substitutions
to the query would be difficult, if not impossible to define.

The declarative semantics provide a sound basis for formal proofs about lan-
guage properties. In particular, we have used it for proving the bounded event

lifespan property for all legal event queries. Legal event queries are atomic event
queries and composite event queries that are accompanied by temporal restric-
tions, such as q within d, q in [t1..t2], q before t2, or without q during [t1..t2].
All legal event queries are such that no data on any event has to be kept forever
in memory, i.e., the lifespan of every event is bounded.

More exactly, to evaluate any legal event query q at some time t correctly,
only events of bounded life-span are necessary; that is, it suffices to consider the
restriction E |tt−β of the event stream E to a time interval [(t−β) .. t]. The time
bound β (a length of time) is only determined from q and does not depend on
the incoming events E . A more formal account of this and detailed proofs can
be found in [10].

5 Evaluation of Composite Event Queries

Evaluation of composite event queries against the stream of incoming event mes-
sages should be performed in an incremental manner: work done in one evalua-
tion step of an event query on some incoming atomic event should not be redone
in future evaluation steps on further incoming events. Following the ideas of the
rete algorithm [11] and previous work on composite event detection like [12], we
evaluate a composite event query incrementally by storing all partial evaluations
in the query’s operator tree. Leaf nodes in the operator tree implement atomic
event queries, inner nodes implement composition operators and time restric-
tions. When an event message is received, it is injected at the leaf nodes; data
in the form of event query answers (s, Σ) (cf. Sect. 4) then flows bottom-up in
the operator tree during this evaluation step. Inner nodes can store intermediate

8 Bry, Eckert, and Pătrânjan

SetOfCompositeEvents evaluate(AndNode n, AtomicEvent a) {
// receive events from child nodes
SetOfCompositeEvents newL := evaluate(n.leftChild, a);
SetOfCompositeEvents newR := evaluate(n.rightChild, a);

// compose composite events
SetOfCompositeEvents answers := ∅;
foreach ((sL, ΣL), (sR, ΣR)) ∈(newL × n.storageR) ∪

(n.storageL × newR) ∪
(newL × newR) {

SubstitutionSet Σ := ΣL on ΣR;
if (Σ 6= ∅) answers := answers ∪ new CompositeEvent(sL ∪ sR, Σ);

}

// update event storage
n.storageL := n.storageL ∪ newL;
n.storageR := n.storageR ∪ newR;

// forward composed events to parent node
return answers;

}

Fig. 2. Implementation of a (binary) and inner node in pseudo-code

results to avoid recomputation when the next evaluation step is initiated by the
next incoming event message.

Leaf nodes process an injected event message by trying to match it with their
atomic event query (using Simulation Unification). If successful, this results in
a substitution set Σ 6= ∅, and the answer (s, Σ), where s is an event sequence
containing only the one event message, is forwarded to the parent node. Inner
nodes process events they receive from their children following the basic pattern:

1. attempt to compose composite events (s, Σ) (according to the operator the
inner node implements) from the stored and the newly received events,

2. update the event storage by adding newly received events that might be
needed in later evaluations,

3. forward the events composed in (1) to the parent node.

Fig. 2 sketches an implementation for the evaluation of a (binary) and in-
ner node in java-like pseudo-code. Consider it in an example of evaluating the
event query q =and{ a{{var X}}, b{{var X}} } within 2h in Fig. 3. (Keep
in mind, Fig. 2 covers only the and-node; within is a separate node with a
separate implementation)

In Fig. 3, we now let event messages arrive at time points t = 1, 2, 3. For
simplicity, these are each one hour apart; this is of course not the normal case
in practice and not an assumption made by the algorithm.

Fig. 3(a) depicts receiving a{1,2} at time t = 1. It does not match with
the atomic event query b{{var X}} (right leaf in the tree). But it does match
with the atomic event query a{{var X}} (left leaf) with substitution set Σ1 and
is propagated upwards in the tree as answer (s1, Σ1) to the parent node and

(Fig. 3(d) defines si and Σi). The and-node cannot form a composite event from
its input, yet, but it stores (s1, Σ1) for future evaluation steps.

At t = 2 we receive b{2,3} (Fig. 3(b)); it matches the right leaf node and
(s2, Σ2) is propagated upwards. The and-node stores (s2, Σ2) and tries to form a

Querying Composite Events for Reactivity on the Web 9

within 2h

and

a{{var X}} b{{var X}}

a{1,2}

(s1, Σ1)

(a) t=1

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1)

b{2,3}

(s2, Σ2)

(s3, Σ3)

(b) t=2

within 2h

and

a{{var X}} b{{var X}}

(s1, Σ1)
(s2, Σ2)

a{3}

(s4, Σ4)

(s5, Σ5)

(c) t=3

s1 = 〈a{1,2}〉, Σ1 = {{X 7→ 1}, {X 7→ 2}}; s2 = 〈b{2,3}〉, Σ2 = {{X 7→ 2}, {X 7→ 3}};
s3 = 〈a{1,2}, b{2,3}〉, Σ3 = {{X 7→ 2}}; s4 = 〈a{3}〉, Σ4 = {{X 7→ 3}}; s5 = 〈b{2,3}a{4}〉, Σ5 = {{X 7→ 3}}.

(d) Definitions of si and Σi

Fig. 3. Incremental evaluation of an event query using bottom-up data flow in a
storage-augmented operator tree

composite event (s3, Σ3) from (s1, Σ1) and (s2, Σ2). To be able to compose the
events they have to agree on the variables substitutions with a common Σ3. This
can be computed as a (variant of a) natural join (⊥ denotes undefined): Σ3 =
Σ1 on Σ2 = {σ1 ∪ σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2, ∀X. σ1(X) = σ2(X) ∨ σ1(X) = ⊥ ∨
σ2(X) = ⊥}. Σ3 now contains all substitutions that can be used simultaneously
in all atomic event queries in and’s subtree. Σ = ∅ would signify that no such
substitution exists and thus no composite event can be formed. In our case
however there is exactly one substitution {X 7→ 2} and we propagate (s3, Σ3)
to the within 2h-node. This node checks that end(s3)− begin(s3) = 1 ≤ 2 and
pushes (s3, Σ3) up (there is no need to store it). With this (s3, Σ3) reaches the
top and we have our first answer to the event query q.

Fig. 3(c) shows reception of another event message a{3} at t = 3, which
results in another answer (s5, Σ5) to q. After the query evaluation at t = 3,
we can release (delete) the stored answer (s1, Σ1) from the operator tree: any
composite event formed with use of (s1, Σ1) will not pass the within 2h-node.
Event deletion is performed by top-down traversal of the operator tree. Temporal
restriction operator nodes put restrictions on begin(s) and end(s) for all answers
(s, Σ) stored in their subtrees. In our example, all events (s, Σ) in the subtree
of within 2h must satisfy t − 2 ≤ begin(s), where t is the current time.

6 Conclusions

This article has presented the event query facilities of the reactive rule-based
language XChange. Event queries detect (composite) events in the stream of
incoming event messages and extract data from them for use in the subsequent
reaction. The event query language is tailored for the Web: Events are repre-
sented as XML messages, so it is necessary to extract data from them with an

10 Bry, Eckert, and Pătrânjan

XML query language. When composing Web Services or other reactive applica-
tions in an ad-hoc manner, situations that require a reaction oftentimes are not
given through a single atomic event, requiring support for composite events.

While composite event detection has been explored in the active database
community, this work doesn’t consider or extract data contained in events. An
important novelty in the XChange event query language are the free variables,
which allow to “correlate” data from different events during the composite event
detection and to extract data in the form of variable bindings for use in the rest
of a reactive rule. This work has defined declarative semantics for composite
event queries in the presence of free variables. Existing approaches to composite
event detection have been extended to incrementally evaluate such queries.

Acknowledgments

This research has been funded by the European Commission and by the Swiss
Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (http://rewerse.net).

References

1. Bry, F., Pătrânjan, P.L.: Reactivity on the Web: Paradigms and applications of
the language XChange. In: Proc. 20th ACM Symp. on Applied Computing. (2005)

2. Bailey, J., Bry, F., Eckert, M., Pătrânjan, P.L.: Flavours of XChange, a rule-based
reactive language for the (Semantic) Web. In: Proc. Intl. Conf. on Rules and Rule
Markup Languages for the Semantic Web. (2005)

3. Pătrânjan, P.L.: The Language XChange: A Declarative Approach to Reactivity
on the Web. PhD thesis, Institute for Informatics, University of Munich (2005)

4. Schaffert, S., Bry, F.: Querying the Web reconsidered: A practical introduction to
Xcerpt. In: Proc. Extreme Markup Languages. (2004)

5. Bry, F., Schaffert, S.: Towards a declarative query and transformation language
for XML and semistructured data: Simulation Unification. In: Proc. Int. Conf. on
Logic Programming. (2002)

6. Bailey, J., Poulovassilis, A., Wood, P.T.: Analysis and optimisation of event-
condition-action rules on XML. Computer Networks 39 (2002)

7. Berger, S., Bry, F., Bolzer, O., Furche, T., Schaffert, S., Wieser, C.: Querying
the standard and Semantic Web using Xcerpt and visXcerpt. In: Proc. European
Semantic Web Conf. (2005)

8. Zimmer, D., Unland, R.: On the semantics of complex events in active database
management systems. In: Proc. 15th Int. Conf. on Data Engineering. (1999)

9. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the
Web. PhD thesis, Institute for Informatics, University of Munich (2004)

10. Eckert, M.: Reactivity on the Web: Event queries and composite event detection in
XChange. Master’s thesis, Institute for Informatics, University of Munich (2005)

11. Forgy, C.L.: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19 (1982)

12. Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for
active databases: Semantics, contexts and detection. In: Proc. 20th Int. Conf. on
Very Large Data Bases. (1994)

