116 research outputs found

    Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

    Full text link
    We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.Comment: CVPR 2018. The first two authors contributed equally to this work. Project page: http://pix3d.csail.mit.ed

    A simplified and novel technique to retrieve color images from hand-drawn sketch by human

    Get PDF
    With the increasing adoption of human-computer interaction, there is a growing trend of extracting the image through hand-drawn sketches by humans to find out correlated objects from the storage unit. A review of the existing system shows the dominant use of sophisticated and complex mechanisms where the focus is more on accuracy and less on system efficiency. Hence, this proposed system introduces a simplified extraction of the related image using an attribution clustering process and a cost-effective training scheme. The proposed method uses K-means clustering and bag-of-attributes to extract essential information from the sketch. The proposed system also introduces a unique indexing scheme that makes the retrieval process faster and results in retrieving the highest-ranked images. Implemented in MATLAB, the study outcome shows the proposed system offers better accuracy and processing time than the existing feature extraction technique

    Cali-Sketch: Stroke Calibration and Completion for High-Quality Face Image Generation from Poorly-Drawn Sketches

    Get PDF
    Image generation task has received increasing attention because of its wide application in security and entertainment. Sketch-based face generation brings more fun and better quality of image generation due to supervised interaction. However, When a sketch poorly aligned with the true face is given as input, existing supervised image-to-image translation methods often cannot generate acceptable photo-realistic face images. To address this problem, in this paper we propose Cali-Sketch, a poorly-drawn-sketch to photo-realistic-image generation method. Cali-Sketch explicitly models stroke calibration and image generation using two constituent networks: a Stroke Calibration Network (SCN), which calibrates strokes of facial features and enriches facial details while preserving the original intent features; and an Image Synthesis Network (ISN), which translates the calibrated and enriched sketches to photo-realistic face images. In this way, we manage to decouple a difficult cross-domain translation problem into two easier steps. Extensive experiments verify that the face photos generated by Cali-Sketch are both photo-realistic and faithful to the input sketches, compared with state-of-the-art methodsComment: 10 pages, 12 figure

    Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

    Full text link
    We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.Comment: CVPR 2018. The first two authors contributed equally to this work. Project page: http://pix3d.csail.mit.ed

    Deep Learning for Free-Hand Sketch: A Survey

    Get PDF
    Free-hand sketches are highly illustrative, and have been widely used by humans to depict objects or stories from ancient times to the present. The recent prevalence of touchscreen devices has made sketch creation a much easier task than ever and consequently made sketch-oriented applications increasingly popular. The progress of deep learning has immensely benefited free-hand sketch research and applications. This paper presents a comprehensive survey of the deep learning techniques oriented at free-hand sketch data, and the applications that they enable. The main contents of this survey include: (i) A discussion of the intrinsic traits and unique challenges of free-hand sketch, to highlight the essential differences between sketch data and other data modalities, e.g., natural photos. (ii) A review of the developments of free-hand sketch research in the deep learning era, by surveying existing datasets, research topics, and the state-of-the-art methods through a detailed taxonomy and experimental evaluation. (iii) Promotion of future work via a discussion of bottlenecks, open problems, and potential research directions for the community.Comment: This paper is accepted by IEEE TPAM

    LEARNING FROM MULTIPLE VIEWS OF DATA

    Get PDF
    This dissertation takes inspiration from the abilities of our brain to extract information and learn from multiple sources of data and try to mimic this ability for some practical problems. It explores the hypothesis that the human brain can extract and store information from raw data in a form, termed a common representation, suitable for cross-modal content matching. A human-level performance for the aforementioned task requires - a) the ability to extract sufficient information from raw data and b) algorithms to obtain a task-specific common representation from multiple sources of extracted information. This dissertation addresses the aforementioned requirements and develops novel content extraction and cross-modal content matching architectures. The first part of the dissertation proposes a learning-based visual information extraction approach: Recursive Context Propagation Network or RCPN, for semantic segmentation of images. It is a deep neural network that utilizes the contextual information from the entire image for semantic segmentation, through bottom-up followed by top-down context propagation. This improves the feature representation of every super-pixel in an image for better classification into semantic categories. RCPN is analyzed to discover that the presence of bypass-error paths in RCPN can hinder effective context propagation. It is shown that bypass-errors can be tackled by inclusion of classification loss of internal nodes as well. Secondly, a novel tree-MRF structure is developed using the parse trees to model the hierarchical dependency present in the output. The second part of this dissertation develops algorithms to obtain and match the common representations across different modalities. A novel Partial Least Square (PLS) based framework is proposed to learn a common subspace from multiple modalities of data. It is used for multi-modal face biometric problems such as pose-invariant face recognition and sketch-face recognition. The issue of sensitivity to the noise in pose variation is analyzed and a two-stage discriminative model is developed to tackle it. A generalized framework is proposed to extend various popular feature extraction techniques that can be solved as a generalized eigenvalue problem to their multi-modal counterpart. It is termed Generalized Multiview Analysis or GMA, and used for pose-and-lighting invariant face recognition and text-image retrieval

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Neural Radiance Fields: Past, Present, and Future

    Full text link
    The various aspects like modeling and interpreting 3D environments and surroundings have enticed humans to progress their research in 3D Computer Vision, Computer Graphics, and Machine Learning. An attempt made by Mildenhall et al in their paper about NeRFs (Neural Radiance Fields) led to a boom in Computer Graphics, Robotics, Computer Vision, and the possible scope of High-Resolution Low Storage Augmented Reality and Virtual Reality-based 3D models have gained traction from res with more than 1000 preprints related to NeRFs published. This paper serves as a bridge for people starting to study these fields by building on the basics of Mathematics, Geometry, Computer Vision, and Computer Graphics to the difficulties encountered in Implicit Representations at the intersection of all these disciplines. This survey provides the history of rendering, Implicit Learning, and NeRFs, the progression of research on NeRFs, and the potential applications and implications of NeRFs in today's world. In doing so, this survey categorizes all the NeRF-related research in terms of the datasets used, objective functions, applications solved, and evaluation criteria for these applications.Comment: 413 pages, 9 figures, 277 citation

    Semi-supervised machine learning techniques for classification of evolving data in pattern recognition

    Get PDF
    The amount of data recorded and processed over recent years has increased exponentially. To create intelligent systems that can learn from this data, we need to be able to identify patterns hidden in the data itself, learn these pattern and predict future results based on our current observations. If we think about this system in the context of time, the data itself evolves and so does the nature of the classification problem. As more data become available, different classification algorithms are suitable for a particular setting. At the beginning of the learning cycle when we have a limited amount of data, online learning algorithms are more suitable. When truly large amounts of data become available, we need algorithms that can handle large amounts of data that might be only partially labeled as a result of the bottleneck in the learning pipeline from human labeling of the data. An excellent example of evolving data is gesture recognition, and it is present throughout our work. We need a gesture recognition system to work fast and with very few examples at the beginning. Over time, we are able to collect more data and the system can improve. As the system evolves, the user expects it to work better and not to have to become involved when the classifier is unsure about decisions. This latter situation produces additional unlabeled data. Another example of an application is medical classification, where experts’ time is a rare resource and the amount of received and labeled data disproportionately increases over time. Although the process of data evolution is continuous, we identify three main discrete areas of contribution in different scenarios. When the system is very new and not enough data are available, online learning is used to learn after every single example and to capture the knowledge very fast. With increasing amounts of data, offline learning techniques are applicable. Once the amount of data is overwhelming and the teacher cannot provide labels for all the data, we have another setup that combines labeled and unlabeled data. These three setups define our areas of contribution; and our techniques contribute in each of them with applications to pattern recognition scenarios, such as gesture recognition and sketch recognition. An online learning setup significantly restricts the range of techniques that can be used. In our case, the selected baseline technique is the Evolving TS-Fuzzy Model. The semi-supervised aspect we use is a relation between rules created by this model. Specifically, we propose a transductive similarity model that utilizes the relationship between generated rules based on their decisions about a query sample during the inference time. The activation of each of these rules is adjusted according to the transductive similarity, and the new decision is obtained using the adjusted activation. We also propose several new variations to the transductive similarity itself. Once the amount of data increases, we are not limited to the online learning setup, and we can take advantage of the offline learning scenario, which normally performs better than the online one because of the independence of sample ordering and global optimization with respect to all samples. We use generative methods to obtain data outside of the training set. Specifically, we aim to improve the previously mentioned TS Fuzzy Model by incorporating semi-supervised learning in the offline learning setup without unlabeled data. We use the Universum learning approach and have developed a method called UFuzzy. This method relies on artificially generated examples with high uncertainty (Universum set), and it adjusts the cost function of the algorithm to force the decision boundary to be close to the Universum data. We were able to prove the hypothesis behind the design of the UFuzzy classifier that Universum learning can improve the TS Fuzzy Model and have achieved improved performance on more than two dozen datasets and applications. With increasing amounts of data, we use the last scenario, in which the data comprises both labeled data and additional non-labeled data. This setting is one of the most common ones for semi-supervised learning problems. In this part of our work, we aim to improve the widely popular tecjniques of self-training (and its successor help-training) that are both meta-frameworks over regular classifier methods but require probabilistic representation of output, which can be hard to obtain in the case of discriminative classifiers. Therefore, we develop a new algorithm that uses the modified active learning technique Query-by-Committee (QbC) to sample data with high certainty from the unlabeled set and subsequently embed them into the original training set. Our new method allows us to achieve increased performance over both a range of datasets and a range of classifiers. These three works are connected by gradually relaxing the constraints on the learning setting in which we operate. Although our main motivation behind the development was to increase performance in various real-world tasks (gesture recognition, sketch recognition), we formulated our work as general methods in such a way that they can be used outside a specific application setup, the only restriction being that the underlying data evolve over time. Each of these methods can successfully exist on its own. The best setting in which they can be used is a learning problem where the data evolve over time and it is possible to discretize the evolutionary process. Overall, this work represents a significant contribution to the area of both semi-supervised learning and pattern recognition. It presents new state-of-the-art techniques that overperform baseline solutions, and it opens up new possibilities for future research
    corecore