254 research outputs found

    3DTouch: A wearable 3D input device with an optical sensor and a 9-DOF inertial measurement unit

    Full text link
    We present 3DTouch, a novel 3D wearable input device worn on the fingertip for 3D manipulation tasks. 3DTouch is designed to fill the missing gap of a 3D input device that is self-contained, mobile, and universally working across various 3D platforms. This paper presents a low-cost solution to designing and implementing such a device. Our approach relies on relative positioning technique using an optical laser sensor and a 9-DOF inertial measurement unit. 3DTouch is self-contained, and designed to universally work on various 3D platforms. The device employs touch input for the benefits of passive haptic feedback, and movement stability. On the other hand, with touch interaction, 3DTouch is conceptually less fatiguing to use over many hours than 3D spatial input devices. We propose a set of 3D interaction techniques including selection, translation, and rotation using 3DTouch. An evaluation also demonstrates the device's tracking accuracy of 1.10 mm and 2.33 degrees for subtle touch interaction in 3D space. Modular solutions like 3DTouch opens up a whole new design space for interaction techniques to further develop on.Comment: 8 pages, 7 figure

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    An inertial motion capture framework for constructing body sensor networks

    Get PDF
    Motion capture is the process of measuring and subsequently reconstructing the movement of an animated object or being in virtual space. Virtual reconstructions of human motion play an important role in numerous application areas such as animation, medical science, ergonomics, etc. While optical motion capture systems are the industry standard, inertial body sensor networks are becoming viable alternatives due to portability, practicality and cost. This thesis presents an innovative inertial motion capture framework for constructing body sensor networks through software environments, smartphones and web technologies. The first component of the framework is a unique inertial motion capture software environment aimed at providing an improved experimentation environment, accompanied by programming scaffolding and a driver development kit, for users interested in studying or engineering body sensor networks. The software environment provides a bespoke 3D engine for kinematic motion visualisations and a set of tools for hardware integration. The software environment is used to develop the hardware behind a prototype motion capture suit focused on low-power consumption and hardware-centricity. Additional inertial measurement units, which are available commercially, are also integrated to demonstrate the functionality the software environment while providing the framework with additional sources for motion data. The smartphone is the most ubiquitous computing technology and its worldwide uptake has prompted many advances in wearable inertial sensing technologies. Smartphones contain gyroscopes, accelerometers and magnetometers, a combination of sensors that is commonly found in inertial measurement units. This thesis presents a mobile application that investigates whether the smartphone is capable of inertial motion capture by constructing a novel omnidirectional body sensor network. This thesis proposes a novel use for web technologies through the development of the Motion Cloud, a repository and gateway for inertial data. Web technologies have the potential to replace motion capture file formats with online repositories and to set a new standard for how motion data is stored. From a single inertial measurement unit to a more complex body sensor network, the proposed architecture is extendable and facilitates the integration of any inertial hardware configuration. The Motion Cloud’s data can be accessed through an application-programming interface or through a web portal that provides users with the functionality for visualising and exporting the motion data

    Fused mechanomyography and inertial measurement for human-robot interface

    Get PDF
    Human-Machine Interfaces (HMI) are the technology through which we interact with the ever-increasing quantity of smart devices surrounding us. The fundamental goal of an HMI is to facilitate robot control through uniting a human operator as the supervisor with a machine as the task executor. Sensors, actuators, and onboard intelligence have not reached the point where robotic manipulators may function with complete autonomy and therefore some form of HMI is still necessary in unstructured environments. These may include environments where direct human action is undesirable or infeasible, and situations where a robot must assist and/or interface with people. Contemporary literature has introduced concepts such as body-worn mechanical devices, instrumented gloves, inertial or electromagnetic motion tracking sensors on the arms, head, or legs, electroencephalographic (EEG) brain activity sensors, electromyographic (EMG) muscular activity sensors and camera-based (vision) interfaces to recognize hand gestures and/or track arm motions for assessment of operator intent and generation of robotic control signals. While these developments offer a wealth of future potential their utility has been largely restricted to laboratory demonstrations in controlled environments due to issues such as lack of portability and robustness and an inability to extract operator intent for both arm and hand motion. Wearable physiological sensors hold particular promise for capture of human intent/command. EMG-based gesture recognition systems in particular have received significant attention in recent literature. As wearable pervasive devices, they offer benefits over camera or physical input systems in that they neither inhibit the user physically nor constrain the user to a location where the sensors are deployed. Despite these benefits, EMG alone has yet to demonstrate the capacity to recognize both gross movement (e.g. arm motion) and finer grasping (e.g. hand movement). As such, many researchers have proposed fusing muscle activity (EMG) and motion tracking e.g. (inertial measurement) to combine arm motion and grasp intent as HMI input for manipulator control. However, such work has arguably reached a plateau since EMG suffers from interference from environmental factors which cause signal degradation over time, demands an electrical connection with the skin, and has not demonstrated the capacity to function out of controlled environments for long periods of time. This thesis proposes a new form of gesture-based interface utilising a novel combination of inertial measurement units (IMUs) and mechanomyography sensors (MMGs). The modular system permits numerous configurations of IMU to derive body kinematics in real-time and uses this to convert arm movements into control signals. Additionally, bands containing six mechanomyography sensors were used to observe muscular contractions in the forearm which are generated using specific hand motions. This combination of continuous and discrete control signals allows a large variety of smart devices to be controlled. Several methods of pattern recognition were implemented to provide accurate decoding of the mechanomyographic information, including Linear Discriminant Analysis and Support Vector Machines. Based on these techniques, accuracies of 94.5% and 94.6% respectively were achieved for 12 gesture classification. In real-time tests, accuracies of 95.6% were achieved in 5 gesture classification. It has previously been noted that MMG sensors are susceptible to motion induced interference. The thesis also established that arm pose also changes the measured signal. This thesis introduces a new method of fusing of IMU and MMG to provide a classification that is robust to both of these sources of interference. Additionally, an improvement in orientation estimation, and a new orientation estimation algorithm are proposed. These improvements to the robustness of the system provide the first solution that is able to reliably track both motion and muscle activity for extended periods of time for HMI outside a clinical environment. Application in robot teleoperation in both real-world and virtual environments were explored. With multiple degrees of freedom, robot teleoperation provides an ideal test platform for HMI devices, since it requires a combination of continuous and discrete control signals. The field of prosthetics also represents a unique challenge for HMI applications. In an ideal situation, the sensor suite should be capable of detecting the muscular activity in the residual limb which is naturally indicative of intent to perform a specific hand pose and trigger this post in the prosthetic device. Dynamic environmental conditions within a socket such as skin impedance have delayed the translation of gesture control systems into prosthetic devices, however mechanomyography sensors are unaffected by such issues. There is huge potential for a system like this to be utilised as a controller as ubiquitous computing systems become more prevalent, and as the desire for a simple, universal interface increases. Such systems have the potential to impact significantly on the quality of life of prosthetic users and others.Open Acces

    Kinect vs. low-cost inertial sensing for gesture recognition

    Get PDF
    In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our system can achieve near real time recognition by appropriately selecting the sensors that led to the greatest contributing factor for a particular task. Features extracted from multimodal sensor data were used to train and evaluate a customized classifier. This novel technique is capable of successfully classifying various gestures with up to 91 % overall accuracy on a publicly available data set. Secondly we investigate a wide range of different motion capture modalities and compare their results in terms of gesture recognition accuracy using our proposed approach. We conclude that gesture recognition can be effectively performed by considering an approach that overcomes many of the limitations associated with the Kinect and potentially paves the way for low-cost gesture recognition in unconstrained environments

    Highly-Individualized Physical Therapy Instruction beyond the Clinic Using Wearable Inertial Sensors

    Get PDF
    Musculoskeletal conditions, often requiring rehabilitation, affect one-third of the U.S. population annually. This paper presents rehabilitation assistive technology that includes body-worn motion sensors and a mobile application that extends the reach of a physical rehabilitation specialist beyond the clinic to ensure that home exercises are performed with the same precision as under clinical supervision. Assisted by a specialist in the clinic, the wearable sensors and user interface developed allow the capture of individualized exercises unique to the patient’s physical abilities. Beyond the clinical setting, the system can assist patients by providing real-time corrective feedback to repeat these exercises through a correct and complete arc of motion for the prescribed number of repetitions. An inertial measurement unit (IMU) is used on the body part to be exercised to capture its pose. In this paper, we present a kinematics data processing approach to defining custom exercises with flexibility in terms of where it is worn and the nature of the exercise, as well as real-time corrective feedback parameters. The system is tested on two exercises performed by a healthy individual to demonstrate the feasibility and accuracy of the approach. We demonstrate how it can improve exercise adherence by assisting users in reaching the full prescribed range of motion and stay on the ideal plane of motion and improve hold time. Preliminary results from an ongoing clinical trial are presented

    Kinect vs. low-cost inertial sensing For gesture recognition

    Get PDF
    In this paper, we investigate efficient recognition of human gestures / movements from multimedia and multimodal data, including the Microsoft Kinect and translational and rotational acceleration and velocity from wearable inertial sensors. We firstly present a system that automatically classifies a large range of activities (17 different gestures) using a random forest decision tree. Our system can achieve near real time recognition by appropriately selecting the sensors that led to the greatest contributing factor for a particular task. Features extracted from multimodal sensor data were used to train and evaluate a customized classifier. This novel technique is capable of successfully classifying var- ious gestures with up to 91 % overall accuracy on a publicly available data set. Secondly we investigate a wide range of different motion capture modalities and compare their results in terms of gesture recognition accu- racy using our proposed approach. We conclude that gesture recognition can be effectively performed by considering an approach that overcomes many of the limitations associated with the Kinect and potentially paves the way for low-cost gesture recognition in unconstrained environments

    Hand Motion Tracking System using Inertial Measurement Units and Infrared Cameras

    Get PDF
    This dissertation presents a novel approach to develop a system for real-time tracking of the position and orientation of the human hand in three-dimensional space, using MEMS inertial measurement units (IMUs) and infrared cameras. This research focuses on the study and implementation of an algorithm to correct the gyroscope drift, which is a major problem in orientation tracking using commercial-grade IMUs. An algorithm to improve the orientation estimation is proposed. It consists of: 1.) Prediction of the bias offset error while the sensor is static, 2.) Estimation of a quaternion orientation from the unbiased angular velocity, 3.) Correction of the orientation quaternion utilizing the gravity vector and the magnetic North vector, and 4.) Adaptive quaternion interpolation, which determines the final quaternion estimate based upon the current conditions of the sensor. The results verified that the implementation of the orientation correction algorithm using the gravity vector and the magnetic North vector is able to reduce the amount of drift in orientation tracking and is compatible with position tracking using infrared cameras for real-time human hand motion tracking. Thirty human subjects participated in an experiment to validate the performance of the hand motion tracking system. The statistical analysis shows that the error of position tracking is, on average, 1.7 cm in the x-axis, 1.0 cm in the y-axis, and 3.5 cm in the z-axis. The Kruskal-Wallis tests show that the orientation correction algorithm using gravity vector and magnetic North vector can significantly reduce the errors in orientation tracking in comparison to fixed offset compensation. Statistical analyses show that the orientation correction algorithm using gravity vector and magnetic North vector and the on-board Kalman-based orientation filtering produced orientation errors that were not significantly different in the Euler angles, Phi, Theta and Psi, with the p-values of 0.632, 0.262 and 0.728, respectively. The proposed orientation correction algorithm represents a contribution to the emerging approaches to obtain reliable orientation estimates from MEMS IMUs. The development of a hand motion tracking system using IMUs and infrared cameras in this dissertation enables future improvements in natural human-computer interactions within a 3D virtual environment
    • 

    corecore