
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-7-2018

Hand Motion Tracking System using Inertial Measurement Units Hand Motion Tracking System using Inertial Measurement Units

and Infrared Cameras and Infrared Cameras

Nonnarit O-larnnithipong
nolar002@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Navigation, Guidance, Control, and Dynamics Commons, Robotics Commons, and the

Signal Processing Commons

Recommended Citation Recommended Citation
O-larnnithipong, Nonnarit, "Hand Motion Tracking System using Inertial Measurement Units and Infrared
Cameras" (2018). FIU Electronic Theses and Dissertations. 3905.
https://digitalcommons.fiu.edu/etd/3905

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1409?utm_source=digitalcommons.fiu.edu%2Fetd%2F3905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.fiu.edu%2Fetd%2F3905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.fiu.edu%2Fetd%2F3905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3905?utm_source=digitalcommons.fiu.edu%2Fetd%2F3905&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

HAND MOTION TRACKING SYSTEM USING INERTIAL MEASUREMENT

UNITS AND INFRARED CAMERAS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Nonnarit O-larnnithipong

2018

To: Dean John Volakis
College of Engineering and Computing

This dissertation, written by Nonnarit O-larnnithipong, and entitled Hand Motion
Tracking System Using Inertial Measurement Units and Infrared Cameras, having
been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Malek Adjouadi

Jean Andrian

Wei Zeng

Armando Barreto, Major Professor

Date of Defense: November 7, 2018

The dissertation of Nonnarit O-larnnithipong is approved.

Dean John Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development
and Dean of the University Graduate School

Florida International University, 2018

ii

c� Copyright 2018 by Nonnarit O-larnnithipong

All rights reserved.

iii

DEDICATION

To my parents, family and friends.

iv

ACKNOWLEDGMENTS

I would like to express my sincere gratitude and deep appreciation to my major

Professor, Dr. Armando Barreto, for his constant encouragement, valuable guidance

and support in navigating the research process. I am grateful as the completion of

this endeavor would not have been possible without his help, support and patience

throughout the study period. He is the best teacher and advisor I have ever had in

my life. I also would like to recognize my committee members Dr. Malek Adjouadi,

Dr. Jean Andrian and Dr. Wei Zeng for their guidances and expertises.

Over the years of my PhD study, I have been motivated by Dr. Francisco Ortega

and Dr. Fatemeh Abyarjoo who provide me the opportunities to extend my academic

excellence and encourage me to produce quality research. I am fortunate to meet and

be supported by several friends including Pasd Putthapipat, Sitthapon Pumpichet,

Chayapol Chaiyanan, Peeraya Inyim, Praew Chantarasinlapin, Lukkamol Prapkree,

Neeranut Ratchatanantakit, Panuwat Janwattanapong, Nalat Sornkhampan, Julian

Gil, Steward Schwarz, Kelvin Gomez and Daniel Walls. Their friendship, encour-

agements and guidances facilitated challenges that I encountered during my PhD

program. I would like to also extend my special thanks to the Department of Elec-

trical and Computer Engineering sta↵, Pat Brammer, Layla El-Hilu and Luisa Ruiz

for their administrative assistances.

I would like to express my love to my parents, family, and my friends in Thailand.

Without their constant supports and encouragements, this accomplishment would

never have been possible.

The research in this dissertation was supported by National Sciences Foundation

grants HRD-0833093 and CNS-1532061, and the FIU Graduate School Dissertation

Year Fellowship.

v

ABSTRACT OF THE DISSERTATION

HAND MOTION TRACKING SYSTEM USING INERTIAL MEASUREMENT

UNITS AND INFRARED CAMERAS

by

Nonnarit O-larnnithipong

Florida International University, 2018

Miami, Florida

Professor Armando Barreto, Major Professor

This dissertation presents a novel approach to develop a system for real-time tracking

of the position and orientation of the human hand in three-dimensional space, using

MEMS inertial measurement units (IMUs) and infrared cameras. This research

focuses on the study and implementation of an algorithm to correct the gyroscope

drift, which is a major problem in orientation tracking using commercial-grade IMUs.

An algorithm to improve the orientation estimation is proposed. It consists of: 1.)

Prediction of the bias o↵set error while the sensor is static, 2.) Estimation of a

quaternion orientation from the unbiased angular velocity, 3.) Correction of the

orientation quaternion utilizing the gravity vector and the magnetic North vector,

and 4.) Adaptive quaternion interpolation, which determines the final quaternion

estimate based upon the current conditions of the sensor.

The results verified that the implementation of the orientation correction algo-

rithm using the gravity vector and the magnetic North vector is able to reduce the

amount of drift in orientation tracking and is compatible with position tracking

using infrared cameras for real-time human hand motion tracking. Thirty human

subjects participated in an experiment to validate the performance of the hand

motion tracking system. The statistical analysis shows that the error of position

tracking is, on average, 1.7 cm in the x-axis, 1.0 cm in the y-axis, and 3.5 cm in

vi

the z-axis. The Kruskal-Wallis tests show that the orientation correction algorithm

using gravity vector and magnetic North vector can significantly reduce the errors in

orientation tracking in comparison to fixed o↵set compensation. Statistical analyses

show that the orientation correction algorithm using gravity vector and magnetic

North vector and the on-board Kalman-based orientation filtering produced orien-

tation errors that were not significantly di↵erent in the Euler angles, Phi, Theta and

Psi, with the p-values of 0.632, 0.262 and 0.728, respectively.

The proposed orientation correction algorithm represents a contribution to the

emerging approaches to obtain reliable orientation estimates from MEMS IMUs.

The development of a hand motion tracking system using IMUs and infrared cam-

eras in this dissertation enables future improvements in natural human-computer

interactions within a 3D virtual environment.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Research Objective . 2
1.3 Significance of this Research . 3
1.4 Problem Statements and Hypotheses . 5
1.5 Literature Review on Human Hand Motion Tracking Technologies 6
1.5.1 Using Accelerometers . 6
1.5.2 Using Electromyogram (EMG) Sensors 7
1.5.3 Using Magnetic Sensors . 8
1.5.4 Using Resistive, Conductive and Capacitive Sensors 8
1.5.5 Using Vision-based Technologies . 9

2. ROTATION IN THREE-DIMENSIONAL SPACE 11
2.1 Coordinate Systems . 11
2.2 Frames of Reference . 12
2.2.1 The Inertial frame . 12
2.2.2 The Earth Frame . 13
2.2.3 The Body Frame . 13
2.3 Euler Angles and Direct Cosine Matrix 14
2.3.1 Rotational Matrices . 14
2.3.2 Euler Angles . 17
2.3.3 Euler Angle-Axis Sequence: ZYX . 17
2.4 Quaternion . 19
2.4.1 Definition of Quaternion . 20
2.4.2 Quaternion Properties and Calculations 20
2.4.3 Quaternion as a Rotation Operator . 28
2.4.4 Geometry of a Rotation using Quaternion 31
2.5 Relationships between Euler Angles and Quaternion 34
2.5.1 Euler Angles to Quaternion . 34
2.5.2 Quaternion to Euler Angles . 35

3. MEMS INERTIAL SENSORS . 37
3.1 Inertial Sensors . 37
3.2 Accelerometers . 37
3.3 Gyroscope . 39
3.4 Errors in MEMS Inertial Sensors . 41
3.4.1 Systematic Errors . 41
3.4.2 Stochastic Errors . 46

viii

4. ORIENTATION CORRECTION ALGORITHM 49
4.1 Bias O↵set Estimation . 49
4.2 Quaternion Estimation . 50
4.3 Quaternion Correction . 51
4.3.1 Using The Gravity Vector . 53
4.3.2 Using The Magnetic North Vector . 55
4.4 Quaternion Interpolation . 58
4.4.1 Spherical Linear Interpolation . 59
4.4.2 The Sensor’s Stillness and The Control Parameter (↵) 60

5. HAND MOTION TRACKING SYSTEM SETUP 63
5.1 Position Tracking using OptiTrack V120: Trio 63
5.2 Orientation Tracking using Yost Labs 3-Space Sensors 69

6. IMPLEMENTATION OF THE ORIENTATION CORRECTION ALGO-
RITHM . 73

6.1 Implementation of Orientation Correction Algorithm Using Gravity Vector 73
6.1.1 Implementation . 74
6.1.2 Results . 77
6.1.3 Verification of Orientation Correction Algorithm on Hand Orientation

Tracking . 83
6.2 Implementation of Orientation Correction Algorithm Using Gravity Vec-

tor and Magnetic North Vector . 87
6.2.1 Implementation . 88
6.2.2 Results . 90

7. REAL-TIME IMPLEMENTATION OF HANDMOTION TRACKING SYS-
TEM . 94

7.1 Creating 3D Environment in Unity . 94
7.2 Evaluating The Hand Motion Tracking Interface Performance 95
7.3 Results . 98
7.3.1 Static Test . 98
7.3.2 Results from the dynamic task using the Hand Motion Tracking Interface100

8. STATISTICAL EVALUATIONOF HANDMOTION TRACKING SYSTEM 102
8.1 Design of Experiment . 102
8.1.1 Testing Environment Setup . 102
8.1.2 Virtual 3D Environment . 103
8.2 Experiment Procedure . 106
8.3 Experimental Results . 106
8.4 Statistical Evaluations . 109
8.4.1 Position Error Analyses . 109
8.4.2 Orientation Error Analyses . 112

ix

9. CONCLUSION AND FUTURE WORK 121
9.1 Conclusion . 121
9.2 Future Work . 125

BIBLIOGRAPHY . 127

APPENDICES . 132

VITA . 144

x

LIST OF TABLES

TABLE PAGE

5.1 Accelerometer specifications . 71

5.2 Gyroscope specifications . 71

5.3 Magnetometer specifications . 72

7.1 Statistical data of the time used to acquire red cubes in 3D environment 101

8.1 Descriptive statistics for errors in position tracking 109

8.2 Estimated means of the orientation output errors 113

8.3 Tests of normality . 113

8.4 Levene’s test of equality of error variances 113

xi

LIST OF FIGURES

FIGURE PAGE

2.1 (a) Left-hand coordinate system and (b) right-hand coordinate system . 12

2.2 (a) Earth frame and (b) body frame . 13

2.3 Vector rotation on XY-plane . 14

2.4 Di↵erence perspective of rotation on XY-plane (frame rotation) 15

2.5 The aerospace Euler angle-axis sequence 18

2.6 Vector rotation and referencing frame rotation 29

2.7 Rotation operator geometry for 2✓ angle between vectors ~a and ~b 32

3.1 Mechanical structure of MEMS accelerometer 38

3.2 Gyroscopic e↵ect . 39

3.3 Coriolis e↵ect in vibratory MEMS gyroscope 40

3.4 Scaling factor errors . 43

3.5 Misalignment or axes non-orthogonality errors 44

3.6 Run-to-run bias o↵set error of MEMS gyroscope: Yost Labs 3-Space
Sensor . 48

4.1 Block diagram of the proposed drift correction algorithm using both
gravity vector and magnetic North vector correction 52

4.2 Quaternion correction using the gravity vector 53

4.3 Quaternion correction using the magnetic North vector 56

4.4 Spherical linear interpolation between q̂GM and q̂GA 60

5.1 Overview of hand motion tracking system using inertial measurement
units and infrared cameras . 64

5.2 The setup of OptiTrack V120: Trio with Motive:Tracker software run-
ning on the host PC . 64

5.3 The field of view (FOV) of OptiTrack V120: Trio 66

5.4 The glove with IR-reflective dot markers attached on the wrist, one Yost
Labs 3-space sensor attached on the back of the hand, and two Yost
Labs 3-space sensors attached on the index finger 66

xii

5.5 Visible dot marker on three infrared cameras (white dots) and position
of the marker in 3D space shown as an orange dot 67

5.6 Console application to transport marker coordinate data from Motive:
Tracker to Unity . 68

5.7 3D hand model with rigged skeleton in Unity 69

5.8 Yost Labs 3-SpaceTM micro USB . 70

5.9 Finger joint angles and position of Yost Labs 3-SpaceTM sensors 71

6.1 Block diagram of the orientation correction algorithm using only gravity
vector correction . 74

6.2 Flowchart showing the implementation of drift correction algorithm us-
ing only gravity vector compensation for one iteration with the con-
dition that the module should be in a static period (Stillness) 76

6.3 The plots of raw gyroscope data including bias o↵set error, predicted
bias error, quaternion result (without gravity-vector correction). The
numbers written at the bottom of the lower plot identify 9 “poses”
or “stages” in which the module was held temporarily static. 78

6.4 The plots of measured gravity vector from accelerometer, error between
measured and computed gravity vector, estimated quaternion result
(with gravity-vector correction). The numbers written at the bottom
of the lower plot identify 9 “poses” or “stages” in which the module
was held temporarily static. 79

6.5 Comparison between sequences of (a) actual sensor module orientation
at each of the 9 “poses” or “stages” identified in Figures 6.3 and
6.4, (b) 3D visualization of orientation using computed quaternion
and (c) 3D visualization of estimated orientation after gravity vector
correction . 81

6.6 (a) Angular Velocity, (b) Quaternion without gravity vector compensa-
tion, (c) Estimated quaternion with gravity vector compensation . . 84

6.7 Comparison between (a) sequences of actual hand orientation, (b) 3D
visualization of hand orientation using computed quaternion and (c)
3D visualization of estimated hand orientation after gravity vector
compensation. (Stages 1 to 4) [All the pictures in column (a) are
taken from the top, except #6 and #8, which are taken in the back-
to-front direction. All the simulated hands are also viewed in the
back-to-front direction.] . 85

xiii

6.8 Comparison between (a) sequences of actual hand orientation, (b) 3D
visualization of hand orientation using computed quaternion and (c)
3D visualization of estimated hand orientation after gravity vector
compensation. (Stages 5 to 9) [All the pictures in column (a) are
taken from the top, except #6 and #8, which are taken in the back-
to-front direction. All the simulated hands are also viewed in the
back-to-front direction.] . 86

6.9 The glove with IMUs attached on the back of the hand and on the tip
of index finger . 88

6.10 Flowchart showing the implementation of orientation correction algo-
rithm for one iteration using both gravity and magnetic North vector
corrections . 89

6.11 The plots of estimated quaternion results (a) with On-board Kalman-
based Orientation Filtering and (b) with gravity and magnetic North
vectors correction for IMU attached on the back of the hand 91

6.12 The plots of estimated quaternion results (a) with On-board Kalman-
based Orientation Filtering and (b) with gravity and magnetic North
vectors correction for IMU attached on the index finger 91

6.13 Comparison between a sequence of actual hand orientations and 3D
visualizations of estimated hand orientation after gravity vector and
magnetic North vector correction . 93

7.1 Unity game scene for testing real-time implementation of the orientation
correction algorithm . 95

7.2 Initial stage of the play mode when the subject ID is asked 97

7.3 The 3D hand model will turn into green indicating the state of flexing . 97

7.4 The red cube will appear after acquiring the blue cube 98

7.5 Output estimated quaternions without orientation correction algorithm . 99

7.6 Output estimated quaternions with orientation correction algorithm . . 100

8.1 Hand motion tracking system testing environment setup 103

8.2 The sequence of the 3D hand model movement (poses 1 to 5) 104

8.3 The sequence of the 3D hand model movement (poses 6 to 10) 105

8.4 Estimated marginal means of the position errors in x 110

8.5 Estimated marginal means of the position errors in y 111

8.6 Estimated marginal means of the position errors in z 111

xiv

8.7 Estimated marginal means of the orientation errors for Phi 114

8.8 Estimated marginal means of the orientation errors for Theta 115

8.9 Estimated marginal means of the orientation errors for Psi 115

8.10 Results of Kruskal-Wallis test statistics for the orientation errors in the
Euler angle Phi, across three di↵erent algorithms. (In the box plot,
circles are outliers and asterisks are extreme outliers.) 118

8.11 Results of Kruskal-Wallis test statistics for the orientation errors in the
Euler angle Theta, across three di↵erent algorithms. (In the box
plot, circles are outliers and asterisks are extreme outliers.) 119

8.12 Results of Kruskal-Wallis test statistics for the orientation errors in the
Euler angle Psi, across three di↵erent algorithms. (In the box plot,
circles are outliers and asterisks are extreme outliers.) 120

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

The studies on human-computer interaction have been leading towards the devel-

opment of systems in which humans would be able to interact with computers more

naturally [1], [2], [3]. For example, there are several developments on integrating

voice commands into the computer systems or personal mobile devices in order to

request information or to command actions. There is also an increasing popularity

for the uses of Virtual Reality (VR) and Augmented Reality (AR) in several appli-

cations so that the users can experience the interactions with computers or mobile

devices more naturally. To interact with our environment, one of the common ways

is to move our hands in order to grab, hold, move objects or express body language.

Therefore, a computer system that could determine the position, orientation and

track the users hand movement in real-time would greatly contribute to the devel-

opment of natural human-computer interaction. The hand motion tracking system

would introduce an alternative way to develop 3D User Interfaces using touchless

gestures, to become more natural.

Furthermore, hand motion tracking can be adopted to use in several applications

including robotics, gesture recognition, gaming, 3D user interfaces in AR and VR.

For 3D User Interfaces applications in AR and VR, the users are subjected to interact

with immersive environments. To achieve one of the key goals of AR and VR

systems, the user must perceive him or herself as being in the provided AR or VR

environment [4], [5], [6], [7]. This state of perception is called “presence”. Hence,

the AR and VR systems strive to provide the user with highly realistic 3D visual

and binaural acoustic output. Nevertheless, in some modern AR and VR systems,

1

when the user is asked to provide an input to the AR or VR system by performing

“unnatural” sequences of actions using an input device (e.g., mouse, keyboard or

gamepad controller), the unnatural actions can interrupt the perception of presence.

Thus, a full human hand motion tracking system would considerably overcome these

current limitations.

1.2 Research Objective

The objective of this research is to develop a system that would be able to determine

the position and orientation of the human hand and track the movement of the hand

in real-time. The hand motion tracking system could simultaneously monitor two

di↵erent sources of information: Inertial Measurement Units (IMUs) to determine

the orientation of the hand, and infrared cameras to track the hand position. This

research also studies and implements an algorithm to correct gyroscope drift within

the inertial measurement unit and improve orientation tracking. The orientation

correction algorithm is performed by determining the gyroscope bias o↵set error

during the sensor’s static periods in order to calculate an estimated quaternion.

The orientation in a form of quaternion is then corrected using the gravity vector

measured from the accelerometer and the magnetic North vector measured from

magnetometer. The goal for this research is to monitor and visualize the movement

of the human hand in real-time, including both translation and rotation in three-

dimensional space.

2

1.3 Significance of this Research

An Inertial Measurement Unit (IMU) may have several names, depending on the

field of its application. In Aerospace applications, the IMU is used to track an air-

craft’s position and orientation, and it is called the Attitude and Heading Reference

System (AHRS). The IMUs normally consist of Microelectromechanical systems

(MEMS) accelerometers and gyroscopes. In some models, the magnetometers are

also integrated in the units. This MEMS type of inertial sensors are designed to

replace conventional mechanical instruments. The gyroscopes in IMUs can provide

the inertial measurements in a form of angular velocity. Hence, the mathematical

integration is required to ideally calculate the orientation (angle) of a vehicle or a

body in space. However, most commercial-grade MEMS gyroscopes may generate

output signals that deviate from zero even when there is no rotational input applied

on them. This type of error is called the bias o↵set error. This bias o↵set error pro-

duces a severe orientation tracking error called “drift”, which grows proportional

to time. The drift is a common phenomenon in orientation tracking, which causes

several problems in navigation and other applications that utilize commercial-grade

MEMS gyroscopes to determine the orientation of the vehicles, robot arms or any

objects [8], [9].

Many studies have proposed algorithms and solutions to improve orientation

tracking and eliminate gyroscope drift in inertial measurement units. Several stud-

ies [10], [11], [12] employ Kalman-based processes to correct the error of inertial

measurements. However, this Kalman-based approach can be complex and di�cult

to implement [13], [14]. Some studies utilize the concept of sensor fusion, in which

the information from two or more sensors are combined and used to estimate the

orientation. The studies in [15] and [16] show examples of sensor fusion approaches

3

which combine the measurements of accelerometers, gyroscopes, and magnetome-

ters to determine the orientation. It is reasonable to take advantage of the MEMS

sensors contained in a single inertial measurement unit. IMUs then become a valid

option in terms of cost, dimension and integrability to be used to determine the

orientation in human-computer interaction applications.

For this research, we also employ the concept of sensor fusion for orientation

tracking of the human hand. An algorithm to correct gyroscope drift and improve

orientation tracking is proposed. It makes use of the measurements from the ac-

celerometer, gyroscope, and magnetometer in the IMU, to determine the orientation.

As mentioned earlier, we can ideally obtain the estimated orientation by integrating

the angular velocity measured from the gyroscope. However, in order to aid the

orientation estimation using the measurements from the accelerometer and magne-

tometer, we need to understand how to determine the orientation from acceleration

and from Earth’s magnetic field. The acceleration due to gravity is the vector quan-

tity which can be measured by the accelerometer when the IMU is not in motion

because it does not include the linear acceleration (i.e. the acceleration associated

with the movement of the IMU). Even though the direction of acceleration due to

gravity is always pointing towards the Earth’s center, in the sensor’s body frame

the acceleration due to gravity is measured and decomposed into three components

along orthogonal axes of the sensor when the sensor is in an oblique orientation.

Therefore, the gravity vector measured from the accelerometer can represent the

rotation of the sensor’s body frame with respect to the Earth frame. The same

idea is applied with the measurement of the direction of the magnetic North vec-

tor obtained from the magnetometer. This orientation correction algorithm is used

to improve the estimated orientation of the human hand to which the IMUs are

attached on.

4

1.4 Problem Statements and Hypotheses

Question 1: Can we build a system to track the hand motion using several input

sources?

Hypothesis 1 (Objective 1): The proposed hand motion tracking system will

provide the ability to e�ciently track the human hand movement in real-time. The

system will be capable of combining two di↵erent sources of data acquisition and

provide accurate 3D visualization of the hand motion.

Question 2: Can the orientation estimate obtained from the IMU be corrected

using the proposed algorithm?

Hypothesis 2 (Objective 2): The orientation estimate from the IMU will be

corrected using the proposed algorithm, which involves determining the bias o↵set

error and correcting the orientation estimate using the gravity vector from the ac-

celerometer and the magnetic North vector from the magnetometer.

Question 3: Can the readings of the Earth’s gravity vector and magnetic field be

used to repeatedly fine-tune the orientation estimates obtained from a MEMS IMU?

Hypothesis 3 (Objective 3): The measurements of acceleration and magnetic

field from the MEMS IMU can be used under specific circumstances, to fine-tune

the orientation estimates obtained from a MEMS IMU.

Question 4: Can the proposed orientation correction algorithm perform at the

same level as the internal Kalman filter within an IMU module?

Hypothesis 4: The accuracy of the orientation correction algorithm proposed in

this dissertation will not be significantly di↵erent from that of the internal Kalman

filter.

5

1.5 Literature Review on Human Hand Motion Tracking

Technologies

There are several studies and developments on finger flexion monitoring and human

hand motion tracking systems. Each system employs di↵erent types and numbers

of sensing units to detect the hand motion and finger configurations. In this section,

some examples of hand motion tracking systems are presented by categorizing them

based on the types of the sensing units or technologies used in the system.

1.5.1 Using Accelerometers

Hernandez built a hand-shape recognition system that would be able to identify the

di↵erent 26 hand shapes that represent the American Sign Language alphabet [17].

The system utilizes the tracking device called Accele Glove which consists of six

2-axis accelerometers. One accelerometer is attached on each finger and the thumb,

and another one is attached on the back of the hand. The pattern recognition system

optimizes the signals obtained from all six accelerometers in a form of gravitational

vector which can be used to determine the fingers’ orientations. The classifier is

able to recognize 21 out of 26 letters with 100% accuracy. Another example of hand

motion tracking system application for Sign Language has been found in Bai’s work.

Bai [18] proposed a Vietnmese Sign Language (VSL) recognition system by using

six MEMS accelerometers in which five of them are attached to the fingers and the

thumb and one accelerometer is attached on the back of the hand. The recognition

utilizes a fuzzy rule-based model and a set of Vietnamese spelling rules to identify

23 di↵erent postures of the hand and fingers’ configuration which represent the 23

Vietnamese letters with space and punctuation. The system can recognize the hand

6

and fingers posture with high accuracy. There is also a research trend which focuses

on the feasibility of the wearable tracking device by developing the system in which

the sensor information is transmitted wirelessly. A 3-D hand motion tracking and

gesture recognition system developed by Kim [19] consists of one central controller

attached on the wrist and tri-axial accelerometers attached to the thumb, middle

finger and the back of the hand. The information gathered from all sensing units

can be transmitted wirelessly through Bluetooth. The 3-D hand model is created

to visualize the hand gestures using the kinematic chain theory. The system is able

to recognize three simple hand gestures as scissor, rock, and paper.

1.5.2 Using Electromyogram (EMG) Sensors

A hand gesture recongition system which utilizes the forearm electromyography

(EMG) signal was developed by Saponas [20]. The system is able to classify the

finger gestures in real-time in situations when that the hands were both holding

and not holding an object. The system also provides real-time visualization which

can enable the applications in human-computer interaction using muscle-computer

interfaces. In Zhang’s work [21], not only EMG sensors are used, but the MEMS

acclerometers are also utilized to aid in the tracking system. Zhang proposed the

human hand gesture recognition system which is composed of a tri-axial MEMS

accelerometer in combination with multi-channel surface EMG sensors attached on

the wrist of the user. Multi-stream Hidden Markov models were used as decision

method to recognize the hand gestures based on the streaming inertial measurement

and electromyogram signals. Zhang’s proposed method of human hand gesture

recognition can promote more natural approaches to human-computer interaction.

7

1.5.3 Using Magnetic Sensors

uTrack, a technology created by Chen [22], is able to determine the movement

of the thumb and fingers by using two magnetometers. The magnetometers are

placed on a finger and a permanent magnet is a�xed on the back of the thumb.

The two magnetometers are separated with a constant distance to eliminate the

ambiguity problem. The magnetic sensing data stream was used for 3D pointing.

The system can provide the magnet’s 3D position and tilt angle. The average

tracking performance has the accuracy of 4.84 mm in three-dimensional space. Fahn

also presented a system (namely data glove) that is capable of tracking the position

of fingertips [23], using magnetic sensors attached on the fingertips. Generator

coils are attached on the metacarpal areas in order to produce a magnetic field. The

magnetic sensors detect the change in magnetic field due to the flexing of the fingers.

The system can determine the fingers’ bending angles using a method based on the

anatomical shape of the human finger.

1.5.4 Using Resistive, Conductive and Capacitive Sensors

Tarchanidis [24] built a data glove in which force sensors are used to determine the

flexing angles of the fingers and the thumb. The glove is made of rubber-coated

cotton. The force sensors, utilizing commercial strain gauges, are attached on the

back of the fingers and the thumb. Each force sensor outputs linear responses.

The data glove prototype can be used in robotics or human-computer interaction

applications. Saggio also presented a data glove using resistive bend sensors to

detect the flexion of the fingers [25]. The research focused on transforming the

output signals from the bend sensors for music composition using a virtual musical

instrument interface. The system was able to map the signals from the sensors,

8

according to the hand movement to the parameters within a musical synthesizer

using Neural Networks. Another novel data glove developed by Tognetti [26] is

able to determine the hand kinematic configurations. This data glove is made of

elastic fabric integrated with conductive elastomer sensor networks on the glove’s

surface. When the fingers are being flexed, the electrically conductive elastomer

changes its resistance, resulting in changes of the electrical output signals. The

device was validated to use for hand motion tracking purposes. Kurita [27] proposed

a method for contactless hand motion tracking based on the measurement of the

current changes due to the changes in capacitances between the moving hand and

two electrodes. The changes in current measured are used to determine only the

direction and velocity of the human hand movement.

1.5.5 Using Vision-based Technologies

There are several vision-based hand motion tracking technologies. The challenges

in most studies are about developing the image processing and pattern recognition

algorithms in order to determine hand gestures and track the human hand motion.

Nolker proposed a hierarchical approach using neural networks to determine the

positions of the fingertips in grayscale images of human hands [28]. The Gabor-

Filters have been used to process human hand images. The system is capable of

determining the positions of the tip of the fingers and the thumb. It can identify

the pointing direction and detect the sequences of the hand movement even when

the human hand images have low contrast. Rumyantsev [29] developed a method

of detecting hand gestures by utilizing skin color images, a PCA-based detection

algorithm of hand gestures and tracking for the hand centroids. The proposed

image processing algorithm was implemented in a real-time application for human

9

hand motion and gesture recognition. Ong proposed an approach to train a robust

detector in order to detect the presence of human hands in an image and be able

to classify the shape of the hand [30]. The classification of the hand shapes uses

a nearest k-neighbors clustering algorithm. The preliminary experimental results

achieved a very high successful detection rate. Alsheakhali [31] also presented a new

technique of classification for hand motion and trajectory tracking. The proposed

technique is able to recognize 12 hand gestures with high accuracy. Park proposed

a real-time 3D hand tracking system utilizing a 3D depth sensor [32]. The system

tracked the hand location using a Kalman filtering approach. The study validated

the proposed method comparing with a method that was exclusively vision-based.

The results show that by including the 3D depth sensor, the system is able to

track the hand motion more e↵ectively than with the visual-based method. Elgendi

[33] developed the human-computer interaction system using human hand motion.

The study focuses on the training of a pattern recognition model to determine the

human hand gesture speed in a noisy environment using multiple joint features. The

proposed method resulted in a high detection accuracy rate.

10

CHAPTER 2

ROTATION IN THREE-DIMENSIONAL SPACE

In this chapter, we establish some notations, definitions and basic theories of

rotation in three-dimensional space. There are several systems to describe the rota-

tion in Euclidean space, two common systems used in this research, which are Euler

angles and quaternions, will be presented.

2.1 Coordinate Systems

A coordinate system is a system that consists of numbers and rules to describe the

values, positions of points or geometric elements in the Euclidean space. There are

several coordinate systems such as Cartesian, Polar, Spherical and Cylindrical co-

ordinate system. In this research, the Cartesian system system will be used. The

Cartesian coordinate consists of axes which are perpendicular to each other. In two-

dimensional space, the Cartesian coordinates are indicated in a horizontal x-axis,

where the numbers on the axis increase from left to right, and vertical y-axis where

the numbers on the axis increase in the upward direction. The y-axis is 90 degrees

apart from the x-axis in counter clockwise direction. These two axes form a coor-

dinate plane in two-dimensional space. For three-dimensional space, the Cartesian

coordinate system consists of the original x- and y-axis in two-dimensional space

with an addition of the third axis called z-axis which has its direction perpendicu-

lar to the xy-coordinate plane. There are two di↵erent coordinate systems for the

three-dimensional Cartesian coordinate system depending on the direction of +z

direction. Figure 2.1 shows two di↵erence Cartesian coordinate systems: Left-hand

and right-hand coordinate systems. The blue, green and red curved arrows indicate

the direction of positive rotation about x-, y- and z-axis, respectively.

11

Figure 2.1: (a) Left-hand coordinate system and (b) right-hand coordinate system

2.2 Frames of Reference

In a navigation system, it is necessary to define the frames of reference and their

axes in order to standardize and provide the correct measurement of the location

and orientation of the vehicles, aircrafts or the moving objects. The reference frames

in navigation systems are three-dimensional, orthogonal and right-handed Cartesian

coordinate frames.

2.2.1 The Inertial frame

An inertial frame of reference is a frame of reference in which a body is not accel-

erating or moving at a constant speed in a straight line [34]. This inertial frame of

reference has its origin located at the center of the Earth. The frame is not rotating

with respect to the fixed stars.

12

Figure 2.2: (a) Earth frame and (b) body frame

2.2.2 The Earth Frame

The Earth frame is rotating with a constant angular velocity ⌦ about the Earth’s

polar axis (z-axis). The x-axis of the Earth’s frame is fixed at the intersection of

the Greenwich meridian and the Earth’s equator. The y-axis is then perpendicular

to the xz-plane. This frame is illustrated in Figure 2.2(a).

2.2.3 The Body Frame

The body frame is the frame of reference that is attached to the vehicle or object

under study. The z-axis is pointing perpendicularly downward, and the rotation

about this axis describes the heading angle of the vehicle (Yaw). The y-axis is

pointing to right of the vehicle, and the rotation about y-axis indicates the elevation

angle of the vehicle (Pitch). The x-axis is paralell with the vehicle, pointing to where

13

Figure 2.3: Vector rotation on XY-plane

the vehicle is heading. The rotation about x-axis describes the bank angle of the

vehicle (Roll). The body frame is depicted on an aircraft as shown in Figure 2.2(b).

2.3 Euler Angles and Direct Cosine Matrix

2.3.1 Rotational Matrices

The rotation in three-dimensional space can be described using rotational matrices.

To rotate a point or vector in three-dimensional space, a 3-by-3 rotational matrix

R is used to pre-multiply a 3-by-1 coordinate point or vector, resulting in a rotated

3-by-1 point or vector, as shown in Equation 2.1.

~v2 = R ~v1
2

66664

v2x

v2y

v2z

3

77775
=

2

66664

r11 r12 r13

r21 r22 r23

r31 r32 r33

3

77775

2

66664

v1x

v1y

v1z

3

77775

(2.1)

Consider Figure 2.3, which shows the rotation of a vector on the XY plane

about the Z-axis by the angle of �, where the Z-axis is pointing out of the page.

14

Figure 2.4: Di↵erence perspective of rotation on XY-plane (frame rotation)

The relationship of the coordinates for ~v2 in term of the components of ~v1 can be

written as shown in Equation 2.2.

~v2 =

2

66664

v2x

v2y

v2z

3

77775
=

2

66664

k~v1k cos(↵ + �)

k~v1k sin(↵ + �)

v1z

3

77775

=

2

66664

k~v1k cos(↵)cos(�)� k~v1k sin(↵)sin(�)

k~v1k sin(↵)cos(�) + k~v1k cos(↵)sin(�)

v1z

3

77775

(2.2)

Since v1x = k~v1k cos(↵), and v1y = k~v1k sin(↵). Then, we can substitute

k~v1k = v1x
cos(↵) =

v1y

sin(↵) in Equation 2.2, resulting in Equation 2.3.

~v2 =

2

66664

v1xcos(�)� v1ysin(�)

v1ycos(�) + v1xsin(�)

v1z

3

77775
(2.3)

15

When we consider the di↵erent perspectives of rotation, the vector rotation with

negative angle (��) shown in Figure 2.4(a) produces the same result as the rota-

tion of coordinate frame with positive angle (�) as shown in Figure 2.4(b). If we

substitute �� into Equation 2.3, we can obtain Equation 2.4. The coordinate-frame

rotational matrix can be rewritten in a form ~v2 = R ~v1 as shown in Equation 2.5.

~v2 =

2

66664

v1xcos(��)� v1ysin(��)

v1ycos(��) + v1xsin(��)

v1z

3

77775
=

2

66664

v1xcos(�) + v1ysin(�)

v1ycos(�)� v1xsin(�)

v1z

3

77775
(2.4)

~v2 =

2

66664

cos(�) sin(�) 0

�sin(�) cos(�) 0

0 0 1

3

77775

2

66664

v1x

v1y

v1z

3

77775
(2.5)

Notice that once a rotation about an axis is performed, the coordinate point

in that axis will not change its value. Therefore, we can create unique rotational

matrices for rotations about x-, y- and z- axis by using Equation 2.6, 2.7 and 2.8,

respectively. The angles �, ✓ and are the angles that are rotated about each

orthogonal axis, these angles are calle Euler angles.

R
x

�
=

2

66664

1 0 0

0 cos(�) sin(�)

0 �sin(�) cos(�)

3

77775
(2.6)

R
y

✓
=

2

66664

cos(✓) 0 �sin(✓)

0 1 0

sin(✓) 0 cos(✓)

3

77775
(2.7)

16

R
z

=

2

66664

cos() sin() 0

�sin() cos() 0

0 0 1

3

77775
(2.8)

2.3.2 Euler Angles

The Euler angles are one of the common systems used to describe the rotation of

points, vectors, or geometries in two- or three-dimensional Euclidean space. An

Euler angle is an angle of rotation about a coordinate axis. Euler’s theorem stated

that “Any two independent orthogonal coordinate frames can be related by a se-

quence of rotations about coordinate axes, where no two successive rotations may

be about the same axis” [35]. Therefore, any rotations in three-dimensional space

can be described using Euler angles by indicating rotations about multiple axes. In

this process, the sequence of rotation for each axis matters because the successive

rotation will also rotate the previous coordinate axes. By the stated Euler’s theo-

rem, any one of these following twelve Euler Angle-axis sequences can be used for a

three-dimensional rotation:

xyx xyz xzx xzy yxy yxz yzx yzy zxy zxz zyx zyz

2.3.3 Euler Angle-Axis Sequence: ZYX

In Aircraft and Aerospace applications, the Euler Angle-axis sequence ZYX is com-

monly used for aircraft’s heading and attitude tracking. The Euler Angles describe

the aircraft’s orientation with respect to the Earth coordinate frame. The first

rotational angle of the sequence is an Euler angle Psi (), which is the angle ro-

tated about Z-axis that defines the aircraft’s heading angle. Then, the rotation

about the new y’-axis is considered, indicated by an Euler angle Theta (✓) which

17

Figure 2.5: The aerospace Euler angle-axis sequence

decries the aircraft’s elevation angle. The last rotation of the sequence is about the

newest x”-axis, defined by Euler angle Phi (�), which defines the aircraft’s bank

angle. The Aerospace Euler-axis sequence is visually described, as shown in Fig-

ure 2.5. The rotational matrix product of this sequence of rotations is derived in

Equation 2.9, showing the pre-multiplications of rotational matrices for the succes-

sive rotations. The final result of the rotational matrix R consists of three Euler

angles and several trigonometrical functions. This rotational matrix that describes

the rotation in three-dimensional space is also called Direct Cosine Matrix (DCM).

Even though, Euler angles and the Direct Cosine Matrix can clearly describe the

rotation in three-dimensional space, Equation 2.9 shows several multiplications and

the uses of trigonometrical functions, which require some computational time. In

the next section, another representation of rotation called quaternion will be pre-

sented. Using quaternion as a rotational operator will require less computational

time and contains only 4 components instead of 9 elements when using Discrete

Cosine Matrix.

18

R = R
x

�
R

y

✓
R

z

=

2

66664

1 0 0

0 cos(�) sin(�)

0 �sin(�) cos(�)

3

77775

0

BBBB@

2

66664

cos(✓) 0 �sin(✓)

0 1 0

sin(✓) 0 cos(✓)

3

77775

2

66664

cos() sin() 0

�sin() cos() 0

0 0 1

3

77775

1

CCCCA

=

2

66664

1 0 0

0 cos(�) sin(�)

0 �sin(�) cos(�)

3

77775

2

66664

cos(✓)cos() cos(✓)sin() �sin(✓)

�sin() cos() 0

sin(✓)cos() sin(✓)sin() cos(✓)

3

77775

=

2

666666666664

cos(✓)cos() cos(✓)sin() �sin(✓)0

B@
sin(�)sin(✓)cos()

�cos(�)sin()

1

CA

0

B@
sin(�)sin(✓)sin()

+cos(�)cos()

1

CA sin(�)cos(✓)

0

B@
cos(�)sin(✓)cos()

+sin(�)sin()

1

CA

0

B@
cos(�)sin(✓)sin()

�sin(�)cos()

1

CA cos(�)cos(✓)

3

777777777775

(2.9)

2.4 Quaternion

Euler Angles can be used to intuitively describe a rotation in three-dimensional

space. However, in some situations, when the pitch angle reaches +/- 90 degree,

the same changes in roll and yaw angles will result in the same rotation. Thus,

the degrees of freedom of the rotation is reduced from 3 to 2. This phenomenon

is called gimbal lock or singularity problem, which is one of the common problems

in robotics. To prevent this singularity problem, Quaternions will be used as alter-

native representations to describe rotations in three-dimensional space, overcoming

the gimbal lock problem found when using Euler angles.

19

2.4.1 Definition of Quaternion

Quaternion is a hyper-complex number of rank 4 invented by William Rowan Hamil-

ton in 1843 [35]. It consists of three imaginary components and one real number,

denoted with a symbol H (for Hamilton), as shown in Equation 2.10. There are

several ways to denote a quaternion. Equation 2.11 defines a quaternion q as the

grouping of a vector ~q in 3 dimensional space and a scalar qw. The vector ~q can be

decomposed as the sum of products between the scalars qx, qy, qz and the orthogonal

basis in R
3: î, ĵ and k̂, respectively.

q = H(~q, qw) (2.10)

q = ~q+ qw = qxî+ qy ĵ+ qzk̂+ qw (2.11)

Notice that qw, qx, qy and qz are all scalars, thus, the quaternion can be simply

defined using just 4 scalar quantities in R
4. In several sources, the real part of the

quaternion might be put as the first component. But thorough this research, the

scalar qw that indicates the real part of the quaternion will be placed as the last

component, as denoted in Equation 2.12.

q = [qx, qy, qz, qw] (2.12)

2.4.2 Quaternion Properties and Calculations

In this section, the essential properties of quaternions will be explained. It is nec-

essary to understand the basic quaternion definitions because they will be required

in several calculations when performing the orientation correction algorithm. The

quaternion properties are described in the following pages.

20

a.) Addition

Let a be a quaternion which is defined by Equation 2.13 and b be another quaternion

which is defined, as shown in Equation 2.14.

a = axî+ ay ĵ+ azk̂+ aw (2.13)

b = bxî+ by ĵ+ bzk̂+ bw (2.14)

The summation between two quaternions a and b is then defined by the adding

the corresponding scalar quantities, as shown in Equation 2.15.

a+ b = (ax + bx)̂i+ (ay + by)̂j+ (az + bz)k̂+ (aw + bw) (2.15)

b.) Multiplication

Let a be a quaternion which is defined by Equation 2.16 and let C be any scalar

number in R. The scalar multiplication of Ca is defined by multiplying the scalar

C to each of the four components in quaternion a, as shown in Equation 2.17.

a = axî+ ay ĵ+ azk̂+ aw (2.16)

Ca = (Cax)̂i+ (Cay)̂j+ (Caz)k̂+ (Caw) (2.17)

In order to perform multiplication of two quaternions, the definition has to satisfy

the fundamental products between the elements î, ĵ and k̂ [35], as shown in equations

2.18 to 2.21.

î
2
= ĵ

2
= k̂

2
= î̂jk̂ = �1 (2.18)

21

î̂j = k̂ = �ĵ̂i (2.19)

ĵk̂ = î = �k̂ĵ (2.20)

k̂î = ĵ = �îk̂ (2.21)

Let a be a quaternion which is defined by Equation 2.22 and b be another quater-

nion which is defined, as shown in Equation 2.23. Then, Equation 2.24 defines the

multiplication between two quaternions a and b. It can be straightforwardly deter-

mined by multiplying each term in quaternion a into every term in quaternion b,

similar to the multiplication between two polynomials. Note that quaternion mul-

tiplication is associative and distributive but not commutative, meaning that a⌦ b

is not always equal to b⌦ a.

a = axî+ ay ĵ+ azk̂+ aw (2.22)

b = bxî+ by ĵ+ bzk̂+ bw (2.23)

a⌦ b = (axî+ ay ĵ+ azk̂+ aw)(bxî+ by ĵ+ bzk̂+ bw)

= axbxî
2
+ axby î̂j+ axbz îk̂+ axbw î

+ aybx ĵ̂i+ ayby ĵ
2
+ aybz ĵk̂+ aybw ĵ

+ azbxk̂î+ azbyk̂ĵ+ azbzk̂
2
+ azbwk̂

+ awbxî+ awby ĵ+ awbzk̂+ awbw

(2.24)

22

By substituting the Hamilton’s fundamental products decribed in equations 2.18

to 2.21, the multiplication of quaternions a and b can be simplified, as shown in

Equation 2.25

a⌦ b = �axbx + axbyk̂� axbz ĵ+ axbw î

� aybxk̂� ayby + aybz î+ aybw ĵ

+ azbxĵ� azby î� azbz + azbwk̂

+ awbxî+ awby ĵ+ awbzk̂+ awbw

(2.25)

Then, the terms are rearranged and combined, which results as Equation 2.26.

a⌦ b = �(axbx + ayby + azbz) + awbw

+ aw(bxî+ by ĵ+ bzk̂) + bw(axî+ ay ĵ+ azk̂)

+ (aybz � azby)̂i� (axbz � azbx)̂j+ (axby � aybx)k̂

(2.26)

By simplifying Equation 2.26 using the dot product and cross product of two

three-dimensional vectors, the final quaternion multiplication definition is shown in

Equation 2.27.

a⌦ b = awbw � (~a · ~b) + aw
~b+ bw~a+ (~a⇥ ~b) (2.27)

Once again, if we rearrange Equation 2.25, by grouping the coe�cients for each

quaternion component: î, ĵ, k̂ and real part together, we can obtain Equation 2.28.

Then, the quaternion multiplication can be rewritten in matrix form as shown in

Equation 2.29.

23

a⌦ b = [axbw + aybz + az(�by) + awbx]̂i

+ [ax(�bz) + aybw + azbx + awby]̂j

+ [axby + ay(�bx) + azbw + awbz]k̂

+ [ax(�bx) + ay(�by) + az(�bz) + awbw]

(2.28)

a⌦ b =

2

66666664

bw bz �by bx

�bz bw bx by

by �bx bw bz

�bx �by �bz bw

3

77777775

2

66666664

ax

ay

az

aw

3

77777775

(2.29)

c.) Conjugation

Let a be a quaternion which is defined by Equation 2.30. The complex conjugate of

quaternion a is denoted as a⇤. The conjugation can be made by negating the three

imaginary components of the quaternion, as shown in Equation 2.31.

a = ~a+ aw = axî+ ay ĵ+ azk̂+ aw (2.30)

a
⇤ = �~a+ aw = �axî� ay ĵ� azk̂+ aw (2.31)

d.) Norm

The norm of a quaternion a is denoted by |a|, and described as shown in Equation

2.32. The quaternion multiplication has been applied to simplify the equation. The

norm of a quaternion is simply a square root of the sum of each component squared,

as shown in Equation 2.33. Note that the norm of a quaternion is a scalar.

24

kak =
p
a⇤ ⌦ a

=

vuuuuuuuuuut

2

66666664

aw az �ay ax

�az aw ax ay

ay �ax aw az

�ax �ay �az aw

3

77777775

2

66666664

�ax

�ay

�az

aw

3

77777775

=

vuuuuuuuuuut

2

66666664

�axaw � ayaz + ayaz + axaw

axaz � ayaw � axaz + ayaw

�axay + axay � azaw + azaw

a
2
x
+ a

2
y
+ a

2
z
+ a

2
w

3

77777775

=

vuuuuuuuuuut

2

66666664

0

0

0

a
2
x
+ a

2
y
+ a

2
z
+ a

2
w

3

77777775

(2.32)

kak =
q
a2
x
+ a2

y
+ a2

z
+ a2

w
(2.33)

e.) Unit Quaternion

Let a be a quaternion which is defined by Equation 2.34. A unit quaternion of a is

denoted by a quaternion u, which is equal to the scalar multiplication of 1
kak to the

quaternion a, as shown in Equation 2.35. The norm of a unit quaternion, kuk = 1.

a = axî+ ay ĵ+ azk̂+ aw (2.34)

u =
1

kak(axî+ ay ĵ+ azk̂+ aw) (2.35)

f.) Inverse

Let a be a quaternion which is defined by Equation 2.36. To satisfy the definition

of the inverse of a quaternion, a quaternion a
�1 is an inverse of a quaternion a if

and only if a�1 ⌦ a = a⌦ a
�1 = 1.

25

a = ~a+ aw = axî+ ay ĵ+ azk̂+ aw (2.36)

a
�1 ⌦ a = 1 (2.37)

In Equation 2.38, the conjugate of the quaternion a
⇤ is multiplied on both sides

of Equation 2.37. Then, the associative property and the quaternion multiplication

formula from Equation 2.27 are applied, as shown in Equation 2.39.

a
�1 ⌦ a⌦ a

⇤ = a
⇤ (2.38)

a
�1 ⌦ [a2

w
� (~a · (�~a)) + aw(�~a) + aw~a+ (~a⇥ (�~a))] = a

⇤ (2.39)

Since the second and third terms in the multiplication formula can be cancelled

out and the cross product of ~a and (�~a) is equal to zero, the simplification is shown

in Equation 2.40. Then, the sum a
2
w
+ a

2
x
+ a

2
y
+ a

2
z
is basically the square of the

norm of the quaternion a. Therefore, the definition of the inverse of a quaternion is

finally described as shown in Equation 2.42.

a
�1 ⌦ [a2

w
+ a

2
x
+ a

2
y
+ a

2
z
] = a

⇤ (2.40)

a
�1(kak2) = a

⇤ (2.41)

a
�1 = (

1

kak2
)a⇤ (2.42)

Note that if a is a unit quaternion, the inverse of a unit quaternion a is simply

its conjugate, as show in Equation 2.43.

26

a
�1 = a

⇤ (for unit quaternion a) (2.43)

g.) Exponential

Let q be a quaternion which is defined by Equation 2.44. The definition of quater-

nionic exponential is given by e
q, as stated in Equation 2.45.

q = qw + ~q = qw + (qxî+ qy ĵ+ qzk̂) (2.44)

e
q = e

(qw+~q) = e
qwe

~q (2.45)

e
qw is a scalar quantity whereas e~q needs to be derived by using the Taylor series

expansion for the exponential function as shown in Equation 2.46

e
q = e

qw(
1X

k=0

~qk

k!
) = e

qw(1 +
~q

1!
+
~q2

2!
+
~q3

3!
+
~q4

4!
+
~q5

5!
+
~q6

6!
+ ...) (2.46)

Consider equations 2.47 to 2.51, they are the derivations of ~q2, ~q3, ~q4, ~q5, and

~q6. Then, the terms are substituted in Equation 2.46, resulting in Equation 2.52.

~q2 = (qxî+ qy ĵ+ qzk̂)(qxî+ qy ĵ+ qzk̂)

= q
2
x
î
2
+ qxqy î̂j+ qxqz îk̂

+ qxqy ĵ̂i+ q
2
y
ĵ
2
+ qyqz ĵk̂

+ qxqzk̂î+ qyqzk̂ĵ+ q
2
z
k̂
2

= �q
2
x
� q

2
y
� q

2
z

~q2 = �(q2
x
+ q

2
y
+ q

2
z
) = �k~qk2

(2.47)

~q3 = �k~qk2~q (2.48)

27

~q4 = k~qk4 (2.49)

~q5 = k~qk4~q (2.50)

~q6 = �k~qk6 (2.51)

e
q = e

qw

1 +

~q

1!
� k~qk2

2!
� k~qk2~q

3!
+

k~qk4

4!
+

k~qk4~q
5!

� k~qk6

6!
+ ...

!
(2.52)

To simplify the order for each term, k~qk
k~qk is multiplied to the odd factorial terms,

and the equation is rearranged with the odd and even terms separated, as shown in

Equation 2.53.

e
q = e

qw

1 +

k~qk~q
1!k~qk � k~qk2

2!
� k~qk3~q

3!k~qk +
k~qk4

4!
+

k~qk5~q
5!k~qk � k~qk6

6!
+ ...

!

= e
qw

"
~q

k~qk

k~qk
1!

� k~qk3

3!
+

k~qk5

5!
� ...

!
+

1� k~qk2

2!
+

k~qk4

4!
� k~qk6

6!
+ ...

!#

(2.53)

By using the Taylor series expansion formulas for sine and cosine, we can obtain

the Equation 2.54 as the exponential of a quaternion q.

exp(q) = e
q = e

qw

✓
~q

k~qksin(k
~qk) + cos(k~qk)

◆
(2.54)

2.4.3 Quaternion as a Rotation Operator

A unit quaternion q, where its norm kqk = 1, can be used to rotate points or vectors

in three-dimensional space. There are two di↵erent perspectives of how we consider

28

Figure 2.6: Vector rotation and referencing frame rotation

29

any rotations performed. Firstly, a rotation can be considered as a rotation of a

point or vector performed in one referencing coordinate frame. Consider the triple-

product quaternion operator described in Equation 2.55, vector A
~v represents any

three-dimensional vector referenced in a frame “A”. This vector can be transformed

by mean of rotation into another vector A
~w which is also referenced in the same

frame “A”. An example of two-dimensional rotation of a vector is shown in Figure

2.6(a).

A
~w = q ⌦ A

~v⌦ q
⇤ (2.55)

Secondly, the rotation can be considered as a rotation of a reference coordi-

nate frame with respect to another coordinate frame. In Equation 2.56, vector A
~v

represents any three-dimensional vector referenced in a frame “A” while vector B
~v

represents the same vector but referenced in frame “B”. The quaternion A

B
q indicates

a rotation of frame “A” with respect to frame “B”, as shown in Figure 2.6(c). In

another point of view for a frame rotation, we can also consider that frame “B” is

rotated with respect to frame “A”, as visualized in Figure 2.6(d). The quaternion

B

A
q represents this counter-rotation. This pair of opposite rotations can be decribed

algebraically in a quaternion form as B

A
q = A

B
q
⇤ or A

B
q = B

A
q
⇤. With this relationship,

we can rewrite Equation 2.56 as shown in Equation 2.57.

B
~v = B

A
q ⌦ A

~v⌦ B

A
q
⇤

(2.56)

B
~v = A

B
q
⇤ ⌦ A

~v⌦ B

A
q (2.57)

Regardless of any perspectives of rotation, to perform a rotation using the triple-

product quaternion operator, the vectors or points in R
3 have to be transformed into

30

quaternion space (R4). To do so, the three components of the vectors or points are

treated as the 3 imaginary parts in quaternion space. Then a zero real part will be

attached. This type of quaternion with its real part equal to zero is called a pure

quaternion.

~v 2 R
3 = vxî+ vy ĵ+ vzk̂ = [vx, vy, vz] (2.58)

~v 2 R
4 = ~v+ 0 = vxî+ vy ĵ+ vzk̂+ 0 = [vx, vy, vz, 0] (2.59)

2.4.4 Geometry of a Rotation using Quaternion

After we have learned how to use a quaternion to rotate a vector in three-dimensional

space, it is important to understand the relation between the magnitude of the ro-

tating angle and the values of the quaternion components or how the quaternion

described the rotation in three-dimensional space, geometrically. The unit quater-

nion q which can be used as a rotation operator is rewritten in trigonometrical form,

as shown in Equation 2.60. The vector ~u is a unit vector which represents the axis

of rotation and ✓ is a half of the rotating angle about ~u. Therefore, The quaternion

q represents a rotation of an angle 2✓, having ~u as its rotational axis.

q = ~q+ qw = ~u sin(✓) + cos(✓) (2.60)

Quaternion That Represents a Rotation Between Two Vectors

In Chapter 4, the orientation correction algorithm will be introduced. The chapter

includes the correction which requires the construction of quaternion that represents

the angular di↵erence between two vectors. In order to achieve that, we need to

31

Figure 2.7: Rotation operator geometry for 2✓ angle between vectors ~a and ~b

know two pieces of information which are the axis of rotation and the magnitude of

the rotating angle. The simplest way to obtain these two pieces of information is to

treat the two vectors we are studying as if they are on the same plane and have the

plane’s normal as the axis or rotation, where the magnitude of rotating angle is the

angle between the two vectors. Let ~a and ~b be the two vectors in three-dimensional

space and 2✓ be the angle between them, as shown in Figure 2.7. Consider the

dot product and cross product of vectors ~a and ~b in equations 2.61 and 2.62, the

trigonometrical identities for double angle are used to derive the equations in order

to obtain trigonometrical functions with a half of an angle between two vectors.

~a⇥ ~b = ||~a|| ||~b||sin(2✓)~n

~a⇥ ~b = 2 ||~a|| ||~b||sin(✓)cos(✓)~n

~a⇥ ~b =
h
2 ||~a|| ||~b||cos(✓)

i
sin(✓)~n

(2.61)

32

~a · ~b = ||~a|| ||~b||cos(2✓)

~a · ~b = ||~a|| ||~b||(2cos2(✓)� 1)

~a · ~b = 2 ||~a|| ||~b||cos2(✓)� ||~a|| ||~b||

~a · ~b+ ||~a|| ||~b|| =
h
2 ||~a|| ||~b||cos(✓)

i
cos(✓)

(2.62)

For ease of calculation, the term
h
2 ||~a|| ||~b||cos(✓)

i
in Equations 2.61 and 2.62

are then substituted by a variable m.

Let m = 2 ||~a|| ||~b||cos(✓)

~a⇥ ~b = (m) ~n sin(✓) (2.63)

~a · ~b+ ||~a|| ||~b|| = (m)cos(✓) (2.64)

Since ~a⇥~b is a three-dimensional vector and ~a ·~b+ ||~a|| ||~b|| is scalar, therefore,

a quaternion q
0 can be constructed from these components, as shown in Equation

2.65. Equation 2.66 shows the calculation for the norm of quaternion q
0. Since ~n

is a unit quaternion, then its norm squared (kq0k2 = n
2
x
+ n

2
y
+ n

2
z
) equals to 1.

Therefore, we can conclude as shown in Equation 2.66 that kq0k = m.

q
0 = H(~a⇥ ~b, ~a · ~b+ ||~a|| ||~b||) = (m) ~n sin(✓) + (m) cos(✓) (2.65)

kq0k =
q
(m)2

⇥
(sin2(✓)) (n2

x
+ n2

y
+ n2

z
) + cos2(✓)

⇤
= m (2.66)

q =
q
0

kq0k = ~n sin(✓) + cos(✓) (2.67)

Equation 2.67 satisfies the definition of a unit quaternion that represents the

rotation of angle 2✓ about ~n. Therefore, the quaternion q = q
0

kq0k can be used to

33

describe the angular di↵erence between vectors ~a and ~b, where

q
0 = ~a⇥ ~b+ (~a · ~b+ ||~a|| ||~b||)

2.5 Relationships between Euler Angles and Quaternion

2.5.1 Euler Angles to Quaternion

To convert Euler angles to quaternion, we know that each Euler angle is the mag-

nitude of the rotation about each orthogonal axis. Psi () is the heading angle

and the angle to rotate about z-axis. Theta (✓) is called elevation angle, rotating

about y-axis. And Phi (�), bank angle, is the rotation about x-axis. Since a unit

quaternion q↵ can describe the rotation of any ↵ angle by Equation 2.68, where ~u

is the axis of rotation, therefore, we can construct the rotations about z-, y- and

x-axis as shown in equations 2.69 to 2.71.

q
~u
↵
= cos(

↵

2
) + ~usin(

↵

2
) (2.68)

q
k̂

= cos(

2
) + k̂ sin(

2
) (2.69)

q
ĵ
✓
= cos(

✓

2
) + ĵ sin(

✓

2
) (2.70)

q
î
�
= cos(

�

2
) + î sin(

�

2
) (2.71)

The multiplication of unit quaternions where each one of them describes a rota-

tion, represents the sequence of rotations. Thus, the quaternion product in Equation

34

2.72 can describe the Euler angle-axis sequence of rotation (ZYX). The value of each

quaternion has been substituted as shown in Equation 2.73, then Equation 2.74 is

the quaternion equivalence of the rotation using Euler angles with a sequence ZYX.

q = q
k̂

⌦ q

ĵ
✓
⌦ q

î
�

(2.72)

q =

cos(

2
) + k̂ sin(

2
)

�
⌦

cos(

✓

2
) + ĵ sin(

✓

2
)

�
⌦

cos(

�

2
) + î sin(

�

2
)

�
(2.73)

q = qxî+ qy ĵ+ qzk̂+ qw (2.74)

where,

qx = cos(2)cos(
✓

2)sin(
�

2)� sin(2)sin(
✓

2)cos(
�

2)

qy = cos(2)sin(
✓

2)cos(
�

2) + sin(2)cos(
✓

2)sin(
�

2)

qz = sin(2)cos(
✓

2)cos(
�

2)� cos(2)sin(
✓

2)sin(
�

2)

qw = cos(2)cos(
✓

2)cos(
�

2) + sin(2)sin(
✓

2)sin(
�

2)

2.5.2 Quaternion to Euler Angles

Given that a unit quaternion q represents a rotation in three-dimensional space as

shown in Equation 2.75. The Euler angles , ✓ and � that indicate the rotation

about z-, y- and x-axis, respectively, can be determined as shown in Equations 2.76

to 2.78 [36].

q = qxî+ qy ĵ+ qzk̂+ qw (2.75)

 = tan
�1

2(qwqz + qxqy)

1� 2(q2
y
+ q2

z
)

�
(2.76)

35

✓ = sin
�1 [2(qwqy � qxqz)] (2.77)

� = tan
�1

2(qwqx + qyqz)

1� 2(q2
x
+ q2

y
)

�
(2.78)

36

CHAPTER 3

MEMS INERTIAL SENSORS

3.1 Inertial Sensors

Microelectromechanical systems (abbreviated as MEMS) are systems in which minia-

ture mechanical and electronic elements are integrated in a single module [37].

MEMS sensors are commonly made of silicon-based microelectronic elements [38]

and used to acquire the information of interest in the environment [39]. For ex-

ample, MEMS sensors can be used to measure air pressure, temperature, applied

force or concentration of chemical substances. The MEMS sensors are mostly chosen

for commercial-grade applications due to their miniature sizes, lower cost of man-

ufacturing and less power consumption. However, the measurements from MEMS

sensors can be very noisy and require calibrations and filtering processes before us-

ing their signals. MEMS sensors are also popular in navigation system. MEMS

inertial sensors or sometimes called Inertial Measurement Units (IMUs) mostly con-

sists of accelerometers and gyroscopes. They are used to aid the navigation system

in providing more accurate position, heading or attitude tracking of a vehicle.

3.2 Accelerometers

An accelerometer can be used to measure the force that is applied to its sensing

direction in the body frame with respect to the inertial frame of reference. There

are several types of MEMS accelerometers, and they are classified based on how the

mechanical displacement is converted into electrical signal [37]. Examples of MEMS

accelerometer types are: Piezoresistive, Capacitive, Piezoelectric and Tunneling ac-

celerometers. The mechanical elements of the capacitive MEMS accelerometer con-

37

Figure 3.1: Mechanical structure of MEMS accelerometer

sists of a movable proof mass which is anchored to flexible spring legs. When the

force is applied the acceleration is sensed in the applying direction, the capacitances

between the moving legs which are attached to the movable proof mass and the fixed

micro-electrodes are changed due to the change in distance between them. The in-

ternal mechanical structure of the MEMS acceleration is illustrated in Figure 3.1.

Therefore, the output signal of the MEMS accelerometer is simply generated based

on the potential di↵erence across the fixed and moving electrodes. The mathemat-

ical model of this MEMS accelerometer is equivalent to the Mass-Damper-Spring

system. In the past, measuring the acceleration in three-dimensional space, re-

quired three MEMS accelerometers to be arranged in three sensing orthogonal axes

but nowadays 3-axis MEMS accelerometers are commonly sold in the market.

38

Figure 3.2: Gyroscopic e↵ect

3.3 Gyroscope

A gyroscope is a sensor used to measure angular velocity. The conventional gy-

roscope is made of a spinning wheel, which is mounted on three freely rotatable

gimbals. When the wheel is spinning about its spin axis, the spinning can maintain

its spinning axis, and is not a↵ected by the rotation of the external gimbals or the

mounting due to the conservation of angular momentum. However, if one attempts

to apply a rotation to the input axis of the spinning wheel, the gyroscope will pro-

duce a rotational force about the output axis which is perpendicular to the plane of

spinning and input axes by following the right-hand rule. This phenomenon is called

gyroscopic e↵ect as depicted in Figure 3.2. In contrast, MEMS gyroscopes do not

contain any rotating elements. Instead, the sensing unit in MEMS gyroscopes con-

tains a vibratory proof mass and employs the concept of Coriolis e↵ect [37]. When

a body is moving from one point to another in a straight line as observed in the

inertial frame of reference, it is instead observed as moving on a curved line in a

rotating frame due to the Coriolis force produced in the rotation frame. The Coriolis

39

Figure 3.3: Coriolis e↵ect in vibratory MEMS gyroscope

force has its direction perpendicular to both the direction of the moving body and

the rotational axis. Consider the internal mechanical structure of MEMS gyroscope

illustrated in Figure 3.3. It consists of proof masses which are able to move with two

degrees of freedom. The proof masses are attached to flexible spring legs, with their

anchors being the only parts that is fixed to the MEMS substrate. When the proof

masses are driven with a velocity ~v as the body frame is rotating with angular rate

~⌦, the Coriolis forces (~FCoriolis) are produced, having the relationship to the driven

velocity and the angular velocity as shown in Equation 3.1. The Coriolis forces are

detected by the sensing electrodes using an idea similar to that used in the MEMS

accelerometer.

~FCoriolis = �2m~⌦⇥ ~v (3.1)

40

3.4 Errors in MEMS Inertial Sensors

As mentioned previously, MEMS inertial sensors are popular for commercial uses be-

cause of their miniature sizes and low prices. However, they may produce very large

errors in their measurements, in comparison to the tactical-grade inertial measure-

ment devices [40], [41]. There are several types of error in low-cost MEMS initial

sensor [42], such as bias o↵set error, non-orthogonality and scaling factor errors.

It is necessary to understand the nature of these errors in MEMS inertial sensors

because they can severely disrupt the accuracy of the measurements. Thus, these

errors should be addressed before using the MEMS inertial sensors for measurements

or navigations. The errors in MEMS inertial sensors can be categorized into two

types: systematic (or deterministic) errors and stochastic (or random) errors.

3.4.1 Systematic Errors

Systematic errors (or deterministic) errors are caused by environment or manufactur-

ing inaccuracies, which can be determined or modeled using mathematical models.

Some possible systematic errors found in MEMS inertial sensors are the following.

a.) Bias O↵set Error

When the inertial sensors are in their static states, in which there is no input force

applied on the sensor modules, the inertial sensors should ideally provide the output

signals of zero. Instead, the low-cost MEMS inertial sensors could provide positive

or negative output signals that deviate from zero. The mean of the MEMS inertial

sensor output signal obtained during a static period of time is called bias o↵set

error. The bias o↵set error is one of major problems in inertial measurements. For

a MEMS accelerometer, the bias o↵set error in the acceleration reading can cause

41

the linear velocity measurement error to grow proportionally through time (t), and

even cause the error of the distance measurements proportional to time squared (t2)

[43]. The equations 3.2 and 3.3 describe the errors of measurement caused by bias

o↵set error in MEMS accelerometer.

v✏ =

Z
(ba) dt = ba t (3.2)

Error in velocity / t

d✏ =

Z
(ba t)dt =

1

2
ba t

2 (3.3)

Error in distance / t
2

For a MEMS gyroscope, the bias o↵set error a↵ects the measurement of angle.

Since the MEMS gyroscope provide the output signal in a form of angular veloc-

ity. Similar to the accelerometer, the bias o↵set error in MEMS gyroscope causes

the error of angle measurement proportional to time (t). Equation 3.4 shows the

relationship between the bias o↵set error in a MEMS gyroscope and the angle mea-

surement, where ✓✏ is the error in angle measurement and b! is the bias o↵set error

magnitude.

✓✏ =

Z
(b!) dt = b! t (3.4)

Error in angle / t

b.) Scaling Factor Error

The scaling factor describes a ratio of the electrical output signal to the sensitivity

of mechanical input force applied to the MEMS inertial sensor. Ideally, the scaling

factor is equal to 1. If the MEMS inertial sensor produces an output signal compared

42

Figure 3.4: Scaling factor errors

to the input applied, greater or smaller than a factor of 1, the MEMS inertial sensor

is presenting a scaling factor error, which is generally measured in percentage [37].

These situations are illustrated in Figure 3.4 which depicts the relationship between

the input and the output of the MEMS inertial sensor. The scaling factor error can

a↵ect the inertial measurements in ways similar to the bias o↵set error.

c.) Misalignment Error

A misalignment error is typically an error due to inaccuracies during the manufac-

turing of the MEMS inertial sensor. The misalignment error can be also called “axes

non-orthogonality”. The term “axes non-orthogonality” itself already describes the

nature of this error, in which one or more of the sensing axes are not orthogonal

or perpendicular to each other, as depicted in Figure 3.5. The misalignment error

can cause both additive and subtractive amounts of inertial measurement error in

one or more axes, depending on the misalignment angle of the mounting axis that

deviated from the ideal orthogonal axes.

43

Figure 3.5: Misalignment or axes non-orthogonality errors

d.) Run-to-Run Bias and Scaling Factor

Run-to-run bias o↵set and scaling factor error are the bias o↵set and scaling factor

that occur in di↵erently for di↵erent runs of the MEMS inertial sensor. When the

sensor is turned o↵ and turned on again, the bias o↵set error and scaling factor

are slightly changed but remain constant in each run [42]. The MEMS Gyroscope

from Yost Labs (used in the implementation of this research) was tested to observe

the phenomenon of run-to-run bias o↵set error. The Yost labs 3-Space Sensor was

tested by placing the sensor statically on a table, and the signals from its tri-axial

gyroscope were recorded. In Figure 3.6, the plots show the magnitude of the bias

o↵set errors of each gyroscope axis for 45 runs. All 45 runs were recorded from the

same MEMS gyroscope, placed in the same testing environment. Each run shows

three data points from three axes of the gyroscope, which represent the average of

the recorded angular velocity for 60 seconds. The recordings were divided into three

parts which are Part 1: runs 1 to 15, Part 2: runs 16 to 30 and Part 3: runs 31

44

to 45. For the 15 runs in each part, the sensor had been continuously connected

to the host PC and turned on. Between each part, the sensor had been turned o↵

and disconnected from the host PC. The recordings in Part 1 (runs 1 to 15) were

recorded on a di↵erent day from Parts 2 and 3 (runs 16 to 45) which were recorded

on the same day. The plots show that the di↵erence in values of bias o↵set error

between runs follow an interesting pattern.

e.) In-Run Bias and Scaling Factor

In-run bias o↵set error and scaling factor error occur as the value of these errors

change during a run. The in-run bias o↵set error and scaling factor error relate

to the inertial sensor’s stability to maintain the accuracy of the inertial measure-

ments. A part of the in-run bias o↵set error and scaling factor error is considered

as deterministic error which might be able to be modeled mathematically, because

it is caused by environmental conditions or a change in temperature. However, the

remainder of the error is a stochastic process.

f.) E↵ect of Temperature

Since the MEMS inertial sensors have small dimensions, the temperature also plays

a roll in a↵ecting the bias o↵set and scaling factor error in MEMS inertial sensors

[34]. Some of the MEMS inertial sensors nowadays also provide a temperature

sensor integrated within the same module, which could enable the users to monitor

the MEMS inertial sensor’s temperature. Then, the variations of the sensor’s bias

o↵set and scaling factor error due to the changes in temperature could be modeled

and used to correct these errors under di↵erent operating temperatures.

45

3.4.2 Stochastic Errors

Stochastic errors in MEMS inertial sensors are the errors that occur randomly over

time and cannot be modeled using deterministic functions. These errors can occur

due to random electromagnetic interferences in the environment. However, we can

apply several stochastic processes to model these random errors. The simplest model

commonly used is a Gaussian Random Process. It can define the random error (x(t))

as the normal distribution by using its probability density function for any time t

as stated in Equation 3.5.

f [x(t)] =
1

�
p
2⇡

e
� 1

2 (
x�µ
�)2 (3.5)

Another common random process that can be used to model the random error

is called Random Walk process, where its random variable (ḃ(t)) describes the in-

tegration of a white noise process (w(t)) occurred between two consecutive value

of a random variable, as described in Equation 3.6. For MEMS inertial sensors,

like accelerometer and gyroscope, noise output can be considered to be white noise.

The white noise in the output from these devices will be integrated into velocity and

angle. The random error of velocity and angle obtained by integrating these white

noises are call velocity random walk (VRW) and angular random walk (ARW) [37]

for MEMS accelerometers and gyroscopes, respectively. They are the average devia-

tion rates from the correct values [44], which needed to be modeled using stochastic

process and removed to obtain more accurate results.

ḃ(t) = w(t) (3.6)

46

Stochastic Modeling

One of the methods that is used to model the stochastic errors in MEMS inertial

sensors is the “autocorrelation function”. The parameters that describe the ran-

dom error are calculated from the autocorrelation of the raw recordings of MEMS

inertial outputs. To obtain an accurate autocorrelation function, it is required to

collect large amounts of the raw recording data over a long period of time. The

accurate autocorrelation function can help in identifying the type of stochastic pro-

cess of the random error in a MEMS inertial sensor. The stochastic modeling using

autocorrelation function can also be transformed into power spectrum density using

the Fourier transform.

However, the most common method to model random errors in MEMS inertial

sensors is called the Allan Variance [37]. It is a method to characterize the root mean

square of the velocity random walk (VRW) and the angular random walk (ARW)

as a function of averaged time [40]. The Allan variance method is usually presented

in a log-log plot, showing in the y-axis the square root of the Allan variance (Allan

standard deviation) versus the cluster time (T) in the x-axis. The Allan variance can

be written as shown in Equation 3.7, where �(T) is the Allan standard deviation, and

Q is the velocity random walk (VRW) or angular random walk (ARW) coe�cient.

The cluster time (T) is equal to nt0, where n is the number of samples in each cluster

and t0 is the sampling time. The value of Q represents the slope of the log-log plot,

which can be directly used in a noise matrix for filtering process. The coe�cient

Q has units of m/sp
hr

for velocity random walk (VRW), and degp
hr

for angular random

walk (ARW).

�(T) =
Qp
T

(3.7)

47

F
ig
u
re

3.
6:

R
u
n
-t
o-
ru
n
b
ia
s
o↵

se
t
er
ro
r
of

M
E
M
S
gy

ro
sc
op

e:
Y
os
t
L
ab

s
3-
S
p
ac
e
S
en
so
r

48

CHAPTER 4

ORIENTATION CORRECTION ALGORITHM

4.1 Bias O↵set Estimation

When there is no input applied to a gyroscope within the IMUs, the sensor is

expected to ideally generate zero readings in all axes. But for low-cost MEMS,

their output signal could provide the deviation of the measurement from zero called

“gyroscope bias”. The bias is in part a deterministic error for IMUs, caused by

manufacturing defects, environmental conditions or a change in temperature, which

can be modeled. However, there are other components of the bias that are considered

as stochastic processes [37], resulting in the change of bias randomly through time.

Therefore, the bias o↵set error should be estimated for every period of time. In a

real-time situation, the new bias o↵set error will be re-calculated and updated only

when the IMU is in a static period. (i.e. the gyroscope reading has its magnitudes

less than predefined thresholds.) To determine the bias o↵set error, a simple linear

regression model [45], as shown in 4.1, is used. The model coe�cients (�1 and �0)

can be found by using Equations 4.2 and 4.3, where bi and ti are the measured

gyroscope bias and time at the i
th sample, respectively.

b̂ = �0 + �1t (4.1)

�1 =

P
n

t=1(ti � t̄)(bi � b̄)
P

n

t=1 (ti � t̄)2
(4.2)

�0 = b̄� �1t̄ (4.3)

49

The unbiased angular velocity (~!B) is then calculated by subtracting the cal-

culated bias o↵set error (b̂) from the raw gyroscope reading (~!0) as described in

Equation 4.4

~!B = ~!0 � b̂ (4.4)

4.2 Quaternion Estimation

To avoid gimbal lock problems, quaternion notation is used to represent the rota-

tion, having its real part in the forth component. The quaternion rate (q̇) can be

calculated by using the unbiased angular velocity (~!0) and q̂0 which is the quater-

nion estimation of the orientation from the previous iteration. At the beginning

of the algorithm, q̂0 is initialized as [0, 0, 0, 1], indicating a rotation of zero degree.

An unbiased angular velocity vector (~!B) which is in R
3 can be transformed into

quaternion space (R4) by augmenting zero as its real part (the fourth component),

this type of quaternion is called a pure quaternion [35]. Since the real part of !B

in R
4 is zero, the equation to determine quaternion rate can be written in a matrix

form as shown in Equation 4.5.

q̇ =
1

2
q̂0 ⌦ ~!B =

1

2

2

66666664

0 !Bz �!By !Bx

�!Bz 0 !Bx !By

!By �!Bx 0 !Bz

�!Bx �!By �!Bz 0

3

77777775

2

66666664

q̂0x

q̂0y

q̂0z

q̂0w

3

77777775

(4.5)

qG = exp((�t)q̇ ⌦ q̂
⇤
0)⌦ q̂0 (4.6)

The quaternion qG in Equation 4.6 is a representation of the estimated orien-

tation. To calculate this estimated quaternion qG, the quaternion rate obtained

50

from Equation 4.5 is integrated, where �t is the sampling internal used by the IMU

for recording data. This estimated quaternion (qG) can be used to rotate points

or vectors in three-dimensional space, similar to the use of Discrete Cosine Matrix

(DCM) as a rotational matrix. (i.e. It can be used to describe the orientation of

the sensor module or the object that the IMU is attached to, as a rotation from its

initial position.)

4.3 Quaternion Correction

To correct the estimated quaternion (qG) obtained from Section 4.2, additional in-

formation from other sensing units in the IMU will be used. During the sensor’s

static period (when there is no external forces applied to the sensor), the accelerom-

eter in the IMU would ideally provide only a measurement of the acceleration due

to gravity. The magnetometer would provide the direction of the Earth’s magnetic

field. In this study, the terms gravity vector and magnetic North vector will

be used to describe the measurements of the direction of the acceleration due to

gravity and the direction of the Earth’s magnetic field referenced to the sensor’s

body frame, respectively. In the Earth frame, both acceleration due to gravity and

the direction of the Earth’s magnetic field are assumed to be constant. But with

respect to the sensor’s body frame, these vectors have di↵erent values depending on

the orientation of the sensor’s body frame.

Given that a unit quaternion E

B
q represents a rotation in three-dimensional space

of a sensor’s body frame (denoted by B) with respect to the Earth frame (denoted

by E). Then, its conjugate (E
B
q
⇤) represents the inverse rotation or the rotation of

the Earth frame (E) with respect to the sensor’s body frame (B) denoted by B

E
q, as

shown in Equation 4.7

51

Figure 4.1: Block diagram of the proposed drift correction algorithm using both
gravity vector and magnetic North vector correction

B

E
q = E

B
q
⇤ (4.7)

B
~v = B

E
q ⌦ E

~v ⌦ B

E
q
⇤ (4.8)

B
~v = (E

B
q
⇤)⌦ E

~v ⌦ (E
B
q
⇤)⇤ (4.9)

The triple-product quaternion operator shown in Equation 4.8 can be applied to

rotate any vector referenced to the Earth frame (E~v) [35, 46] and express that vector

in the sensor’s body frame as B
~v. Equation 4.9 shows the substitution of Equation

4.7 into Equation 4.8, then another triple-product quaternion operator is obtained,

as shown in Equation 4.10. This quaternion operator will be used for quaternion

correction in the following steps since the estimated quaternion (qG) obtained in

52

Figure 4.2: Quaternion correction using the gravity vector

Section 4.2 represents the estimated orientation of the sensor’s body frame with

respect to the Earth frame.

B
~v = E

B
q
⇤ ⌦ E

~v ⌦ E

B
q (4.10)

4.3.1 Using The Gravity Vector

Each axis of the accelerometer measures the magnitude of the acceleration caused

by the force applied to the sensor in its sensing direction. When the IMU is in a

static period, the accelerometer ideally measures the acceleration due to gravity.

53

The gravity vector referenced in the Earth frame always points vertically down to

the Earth’s center. In order to compare this gravity vector (referenced in the Earth’s

frame) with the measured gravity vector (~a0) from the accelerometer, it is necessary

to transform the gravity vector that is “vertical” in the Earth frame, in order to

represent its value with respect to the sensor’s body frame. The graphical represen-

tation of this approach is shown in Figure 4.2. The calculated gravity vector (~a(qG))

referenced in the sensor’s body frame can be determined by adapting Equation 4.10,

having the result as shown in Equation 4.11.

~a(qG) = qG
⇤ ⌦ Aint ⌦ qG (4.11)

If there is no error in the orientation estimation (qG), the calculated gravity vector

(~a(qG)) from Equation 4.11 would be equal to the measured gravity vector (~a0) ob-

tained from accelerometer readings. The error between the calculated gravity vector

(~a(qG)) and the measured gravity vector (~a0) can represent the error of orientation

estimation. The angular di↵erence between these two vectors can be calculated in

the form of a quaternion denoted by �qA, as shown in Equation 4.12, where its

first three components are the three components of a vector ~qAv which is the cross

product of the calculated gravity vector (~a(qG)) and the measured gravity vector (~a0).

The fourth component (real part) of the di↵erence in quaternion �qA is a scalar qAw

which can be calculated by using Equation 4.14.

�qA = H(~qAv, qAw) (4.12)

~qAv = ~a0 ⇥ ~a(qG) (4.13)

54

qAw = k~a0kk~a(qG)k+ ~a0 · ~a(qG) (4.14)

q̂GA = qG ⌦�qA (4.15)

To correct the orientation estimation (qG), the rotation that represents the angu-

lar di↵erence between measured and calculated gravity vector (�qA) is accumulated

with qG by means of quaternion multiplication. The estimated quaternion with grav-

ity vector correction (q̂GA) is described in Equation 4.15, showing the quaternion

multiplication of the orientation estimation (qG) and the di↵erence in quaternion

between the calculated gravity vector and the measured gravity vector (�qA). The

orientation estimation with gravity vector correction (q̂GA) needs to be normalized

before using it as a rotation operator, to continue the orientation estimation process.

4.3.2 Using The Magnetic North Vector

In this section, the magnetic North vector is used as the referencing vector to correct

the estimated quaternion (qG). A similar approach to the quaternion correction

using gravity vector is performed. Even though the directions of the magnetic North

vector at di↵erent locations on Earth are di↵erent, the magnetic North vector at any

location is always pointing to the North magnetic pole. Thus, the magnetometer in

the IMU should ideally measure the strength and the direction of the magnetic field

that is applied to the IMU. Unlike the gravity vector from the accelerometer reading,

the magnetometer would provide the direction of the magnetic North vector even

the sensor is not in a static period. When the IMU module is rotating, the magnetic

North vector is decomposed into each measuring axis in the sensor’s body frame.

Therefore, the referencing magnetic North vector in the Earth frame (Mint) can be

55

Figure 4.3: Quaternion correction using the magnetic North vector

rotated using the estimated quaternion (qG) from Section 4.2. Equation 4.16 defines

the calculation of the magnetic North vector referenced in the sensor’s body frame

(~m(qG)) from the referencing magnetic North vector in the Earth frame (Mint).

This calculated magnetic North vector (~m(qG)) will then be used to correct the

estimated quaternion by comparing with the measured magnetic North vector from

the magnetometer readings (~m0). The graphical representation of this approach is

shown in Figure 4.3.

~m(qG) = qG
⇤ ⌦Mint ⌦ qG (4.16)

56

If there is no error in the orientation estimation (qG), the calculated magnetic

North vector (~m(qG)) from Equation 4.16 would be equal to the measured magnetic

North vector (~m0) obtained from the magnetometer readings. The error between

the calculated magnetic North vector (~m(qG)) and the measured magnetic North

vector (~m0) can represent the error of orientation estimation. The angular di↵erence

between these two vectors can be calculated in the form of a quaternion denoted

by �qM , as shown in Equation 4.17, where its first three components are the three

components of a vector ~qMv which is the cross product of the calculated magnetic

North vector (~m(qG)) and the measured magnetic North vector (~m0). The fourth

component (real part) of the di↵erence in quaternion �qM is a scalar qMw which

can be calculated by using Equation 4.19.

�qM = H(~qMv, qMw) (4.17)

~qMv = ~m0 ⇥ ~m(qG) (4.18)

qMw = k~m0kk~m(qG)k+ ~m0 · ~m(qG) (4.19)

q̂GM = qG ⌦�qM (4.20)

To correct the orientation estimation (qG), the rotation that represents the an-

gular di↵erence between measured and calculated magnetic North vector (�qM) is

accumulated with qG by means of quaternion multiplication. The estimated quater-

nion with magnetic North vector correction (q̂GM) is described in Equation 4.20,

showing the quaternion multiplication of the orientation estimation (qG) and the

di↵erence in quaternion between the calculated magnetic North vector and the mea-

57

sured magnetic North vector (�qM). The orientation estimation with magnetic

North vector correction (q̂GM) needs to be normalized before using it as a rotation

operator, to continue the orientation estimation process.

The step of quaternion corrections using both the gravity vector and magnetic

North vector are performed simultaneously. While q̂GA represents the estimated

orientation that is fully corrected depending on the measurement of accelerometer,

q̂GM represents the estimated orientation that is fully corrected based on only the

measurement of magnetometer. Quaternion interpolation will be used to determine

the final estimated orientation based on the values of q̂GA and q̂GM , which will be

discussed in section 4.4.

4.4 Quaternion Interpolation

By correcting the gyroscope data using the estimated bias o↵set error and correcting

the estimated quaternion using only the gravity vector, the orientation correction

algorithm is able to improve the orientation tracking of the human hand using IMUs

[47]. But in some situations, the accelerometer does not measure only acceleration

due to gravity but also includes the acceleration due to linear motion, when the

sensor is moving. Therefore, in this case, the accelerometer no longer provides a

reliable representation of the gravity vector in the sensor’s body frame. In contrast,

the rapid movement of the hand does not directly a↵ect the magnetometer measure-

ments. On the other hand, in some circumstances, the magnetic field around the

user might not be completely uniform, due to the presence of ferromagnetic objects.

58

4.4.1 Spherical Linear Interpolation

During the moments when the hand is not in a static situation (i.e. the hand is

moving). The orientation estimation should depend more on the orientation esti-

mates using magnetic North vector correction (q̂GM) than the orientation estimates

using gravity vector correction (q̂GA) because the measurements of the accelerome-

ter include the linear acceleration due to the rapid translation applied to the sensor

module. A suitable approach to determine the final orientation estimates from two

quaternions by using a parametric weight is the approach commonly used for cre-

ating the continuous rendering of 3D objects in computer graphic animation called

Spherical Linear Interpolation (SLERP) or great arc interpolation [48].

SLERP (q0, q1, h) =
q0sin((1� h)⌦) + q1sin(h⌦)

sin(⌦)
(4.21)

cos(⌦) = q0 · q1 (4.22)

Equation 4.21 defines the method of Spherical Linear Interpolation of two quater-

nions, which is the method to calculate the intermediate quaternion between any

two quaternions (q0 and q1). The control parameter (h) indicates the interpolated

points, which ranges from 0 to 1. When the control parameter (h) is close to 0, the

output quaternion will have a tendency towards the starting rotation (q0), and when

the control parameter (h) is close to 1, the output quaternion will have a tendency

towards the ending rotation (q1). The control parameter in the Spherical Linear

Interpolation divides the interpolated rotation linearly. This interpolation method

also preserves the magnitude of a unit quaternion and all the interpolated rotations

lie on the same great arc [48].

59

Figure 4.4: Spherical linear interpolation between q̂GM and q̂GA

4.4.2 The Sensor’s Stillness and The Control Parameter (↵)

The Spherical Linear Interpolation is adapted to use for the calculation of the final

estimated orientation (q̂OUT), which is the rotation interpolated between the orien-

tation estimate using magnetic North vector correction (q̂GM) and the orientation

estimate using gravity vector correction (q̂GA), as described in Equation 4.27. The

angle of the interpolated arc subtended by q̂GM and q̂GA is denoted by ⌦, where

cos(⌦) equals to the 4-dimensional inner product of q̂GM and q̂GA. The control pa-

rameter of quaternion interpolation (↵) is the parameter that indicates the stillness

of the sensor module and can be used to interpolate two quaternions linearly as

visualized in Figure 4.4.

To determine the value of the quaternion interpolation’s control parameter (↵),

the first-order Gamma memory filter is used to smoothen the signal of Confidence

Value provided by the Yost Labs 3-Space Sensor, which indicates the stillness state

of the IMU. When the control parameter µ in a Gamma memory filter has a value

60

between 0 to 1, the filter performs low-pass filtering to the input signal [49]. The

transfer function of the first-order Gamma memory filter in z-domain [50] is shown

in Equation 4.23.

H(z) =
Y (z)

X(z)
=

µ

z � (1� µ)
(4.23)

Y (z) = (µ)z�1
X(z) + (1� µ)z�1

Y (z) (4.24)

y[n] = (µ)x[n� 1] + (1� µ)y[n� 1] (4.25)

↵[n] = (µ)(Confidence V alueavg)
2[n� 1] + (1� µ)↵[n� 1] (4.26)

The first-order Gamma memory filter output (y[n]) is derived from the filter’s

transfer function, as shown in Equation 4.25. In Equation 4.26, the value of the

quaternion interpolation’s control parameter (↵) is substituted as the output of the

Gamma memory filter, having the square of the average of Confidence Value as the

input of the filter. The filter control parameter (µ) is set to 0.25 in order to perform

signal smoothing and prevent a large amount of the delay.

Consider Equation 4.27, when ↵ equals to 1, which indicates that the sensor

is in a static period (not moving), it will make the first term (q̂GMsin((1 � ↵)⌦))

be equal to zero. Therefore, the final estimated quaternion orientation is equal to

the orientation estimation using only the gravity vector correction (q̂GA). When

the sensor is in motion, the accelerometer will also measure the acceleration due

to linear motion. Accordingly, the value of (↵) drops and has a tendency towards

zero. Thus, the final estimated quaternion is the interpolated orientation that tends

towards the orientation estimates using magnetic North vector correction (q̂GM).

61

q̂OUT =
q̂GMsin((1� ↵)⌦) + q̂GAsin(↵⌦)

sin(⌦)
(4.27)

⌦ = cos
�1(q̂GM · q̂GA) (4.28)

This algorithm to estimate the orientation in quaternion form is also visually

described in the block diagram shown in Figure 4.1. The red arrows in the diagram

indicate the measurements of angular velocity (~!0), acceleration due to gravity (~a0)

and the direction of magnetic North vector (~m0) from the gyroscope, accelerometer

and magnetometer in the IMU, respectively. The final orientation estimates (q̂OUT)

is also fed back for the calculation of the quaternion estimates in the initial stage

(qG), for the next iteration.

62

CHAPTER 5

HAND MOTION TRACKING SYSTEM SETUP

This chapter describes how the hand motion tracking system has been set up. The

hand motion tracking system using infrared cameras and inertial measurement units

is able to detect hand position and orientation in three-dimensional space. The in-

frared cameras are capable of determining the Cartesian coordinates of an infrared-

reflective marker attached to a glove worn by the user. Simultaneously, the inertial

measurement units attached to the glove, which consist of tri-axial gyroscope, ac-

celerometer and magnetometer, will be used to determine the orientation of the

hand, proximal phalange and middle phalange of the index finger. The hand mo-

tion tracking system is designed to combine both position and orientation tracking

data acquired from the infrared cameras and the inertial measurement units and ap-

ply them as the transformation (position and orientation) of a pre-designed 3D hand

model. The overview of the hand motion tracking system is visually described, as

shown in Figure 5.1. The visualization of the 3D hand model is implemented within

Unity3D. The 3D hand model is capable of representing the position and orienta-

tion information acquired from the infrared cameras and the inertial measurement

units in real-time while the hand is in motion. The visualization of the hand is

updated accordingly to the actual hand movement. In the this research, we use the

OptiTrack V120: Trio infrared cameras for position tracking and Yost Labs 3-Space

sensors for orientation tracking.

5.1 Position Tracking using OptiTrack V120: Trio

V120: Trio is the optical tracking technology from OptiTrack that consists of three

infrared sensing units which are aligned in the horizontal direction, within a single

63

Figure 5.1: Overview of hand motion tracking system using inertial measurement
units and infrared cameras

Figure 5.2: The setup of OptiTrack V120: Trio with Motive:Tracker software run-
ning on the host PC

64

module of following dimensions: 23 inches in length, 2 inches in width and 1.6 inches

in height. Each infrared sensing unit in this system, is composed of an image sensing

unit surrounded by a circular array of 26 infrared LEDs. Each image sensing unit

is capable of providing an image resolution of 640⇥480 pixels with a frame rate up

to 120 frames per second. Since the three infrared sensing units in the OptiTrack

V120: Trio have fixed distances between each other and it was pre-calibreated by

the manufacturer, the system is ready to use and no calibration is required. The

OptiTrack V120: Trio can easily be connected the host PC via USB 2.0 port or later

version and requires an operating power supply of 12 VDC with a current rating of

3A. The OptiTrack V120: Trio will be used to determine the position of the human

hand in three-dimensional space. It has a field of view of 43 degrees in the vertical

axis and 47 degrees in the horizontal axis. It can operate with a visible distance

from 2 to 17 feet away from the device. The field of view (FOV) of the OptiTrack

V120: Trio is illustrated in Figure 5.3.

For our hand motion tracking system, the OptiTrack V120: Trio is attached

to a vertical stand, placing it above and behind the host PC monitor, as shown

in Figure 5.2. The OptiTrack V120: Trio is operated using an engineering-grade

rigid body and marker tracking software called Motive:Tracker. Five IR-reflective

dot markers are attached around the wrist of the glove (as shown in Figure 5.4)

so that only one marker would be visible to the infrared cameras at a time. The

IR-reflective dot marker will appear as a single point in three-dimensional space,

represented as a parent referencing point for the orientation of the hand and joints

of the finger beyond the wrist. Within Motive:Tracker, there are options for the

users to adjust the intensity of the infrared LEDs, the exposure of the sensing

image and the detection threshold. Therefore, the unwanted reflections that may

appear on the detected images apart from the reflections of the dot markers can be

65

Figure 5.3: The field of view (FOV) of OptiTrack V120: Trio

Figure 5.4: The glove with IR-reflective dot markers attached on the wrist, one Yost
Labs 3-space sensor attached on the back of the hand, and two Yost Labs 3-space
sensors attached on the index finger

66

Figure 5.5: Visible dot marker on three infrared cameras (white dots) and position
of the marker in 3D space shown as an orange dot

eliminated by adjusting those parameters. The dot markers attached around the

wrist reflect the infrared light back to the image sensing units. When the silhouettes

of the reflection are visible to all there infrared cameras, Motive:Tracker can then

compute the position of the dot marker in the form of three-dimensional Cartesian

coordinates (position in x, y and z) in real-time. Motive:Tracker would also be able

to display a visualization of the detected marker in its 3D environment, as a single

point (orange dot), as shown in Figure 5.5.

Motive:Tracker also allows the user to send out the coordinate data to other ap-

plications by using the provided software development kit (SDK) for cross-platform

data streaming called NatNet. By using NatNet SDK, a console application was

written in C++, to stream the marker coordinates detected within Motive:Tracker.

This console application is able to establish the local connection to a NatNet server

in Motive:Tracker. The application processes a marker data stream and encodes it

67

Figure 5.6: Console application to transport marker coordinate data from Motive:
Tracker to Unity

to an XML document. Then, the application transports the XML document locally

over UDP to Unity. A snapshot of the console application using NatNet SDK to

stream marker coordinates is shown in Figure 5.6.

On the Unity side, additional scripts must be created in order to receive the

XML document sent from Motive:Tracker NatNet server via the UDP connection.

The script written in C# is created to parse the marker coordinate data from the

streaming. That marker coordinate is considered as the position of the tracked hand

in three-dimensional space. The raw marker coordinate data was adjusted with a

position o↵set and then applied as the translation of the GameObject: 3D Hand

model, as shown in Figure 5.7. The 3D hand model was previously prepared for the

visualization of the hand motion tracking system.

68

Figure 5.7: 3D hand model with rigged skeleton in Unity

5.2 Orientation Tracking using Yost Labs 3-Space Sensors

For our hand motion tracking system, three Yost Labs 3-Space sensors are used to

determine the orientations. The first sensor is placed at the center of the back of

the hand. The second sensor is attached to the glove at the location of the proximal

phalange of the index finger and used to track the orientation of the index finger’s

proximal phalange with respect to the hand orientation. The last sensor is placed

at the location of the middle phalange of the index finger in order to determine its

orientation with respect to the index finger’s proximal phalange. All three Yost Labs

3-Space sensors are attached on the glove as shown in Figure 5.4. Determination

of the orientation of the furthest joint of the index finger, the distal phalange,

does not require an additional (4th) IMU. The orientation of the distal phalange

can be calculated based on the angle of middle phalange. An empirical study and

experimental observations [51] found the approximate orientation dependency of

these two joints: The joint angle of the distal phalange is equal to two thirds of the

joint angle of the middle phalange, as described in Equation 5.1. The illustration of

the finger’s joint angles and positions of three Yost Labs 3-Space sensors are shown

in Figure 5.9.

69

Figure 5.8: Yost Labs 3-SpaceTM micro USB

�distal =
2

3
�middle (5.1)

The Yost Labs 3-SpaceTM sensor, depicted in Figure 5.8, is a commercial-grade

MEMS inertial measurement unit that consists of accelerometer, gyroscope and

magnetometer. Each sensing unit is capable of measuring the body’s inertia and

the Earth’s magnetic field in three-dimensional space. The Yost Labs 3-SpaceTM

sensor is a low-cost and ultra-miniature inertial measurement unit. Its dimensions

are of 23mm⇥23mm⇥2.2mm and weighs only 1.3 grams. To operate, the Yost Labs

3-SpaceTM sensor requires a DC supply of 3.3-6.0 volts. The data communications

can be performed using USB 2.0 or through an asynchronous serial connection. The

sensor provides several types of data which are raw, corrected or normalized data for

the inertial measurements. Examples of measurements obtained from the sensor are

linear acceleration, acceleration due to gravity, direction and strength of the Earth’s

magnetic field, angular velocity, etc. Moreover, this MEMS sensor also provides

measurement of the temperature. The specifications of MEMS accelerometer, gy-

roscope and magnetometer contained in the Yost Labs 3-SpaceTM sensor are shown

in Tables 5.1, 5.2 and 5.3, respectively.

70

Figure 5.9: Finger joint angles and position of Yost Labs 3-SpaceTM sensors

Table 5.1: Accelerometer specifications

Specifications Value

Scale ±2g / ±4g / ±8g selectable
Resolution 14 bit

Noise Density 99µg/
p
Hz

Sensitivity 0.00024g/digit-0.00096g/digit
Temperature sensitivity ±0.008%/�C

Table 5.2: Gyroscope specifications

Specifications Value

Scale ±250/±500/±1000/±2000 �/sec selectable
Resolution 16 bit

Noise Density 0.009�/sec/
p
Hz

Sensitivity
0.00833�/sec/digit for 250�/sec
0.06667�/sec/digit for 2000�/sec

Temperature sensitivity ±0.03/�C
Bias stability @ 25�C 2.5�/hr average for all axes

Non-linearity 0.2% full-scale

71

Table 5.3: Magnetometer specifications

Specifications Value

Scale ±0.88 Ga to ±8.1 Ga selectable (±1.3 Ga default)
Resolution 12 bit
Sensitivity 0.73 mGa/digit

Non-linearity 0.1% full-scale

Three Yost Labs 3-SpaceTM sensors are connected to the host PC using micro

USB to type-A USB cables. All three sensors were calibrated using Yost Labs 3-

Space Software Suite before being used to implement the orientation tracking. To

acquire the sensor’s data, a set of specific commands has to be sent to the sensor.

The set of commands can be sent in the form of binary codes or ASCII characters.

Within Unity, a C# script was written to send a set of streaming commands to

all three sensors and also receive from them the streamed measurement data and

timestamps, via serial communication ports. The script parses the streaming data

into timestamps (4 bytes), sensor’s confidence value (4 bytes), accelerometer data

(12 bytes), angular velocity (12 bytes) and magnetometer data (12 bytes). The

orientation correction algorithm using gravity vector and magnetic North vector

corrections was implemented within Unity using the parsed data from the streaming.

Then, the output quaternions that estimate the orientations of the hand, proximal

phalange, middle phalange and distal phalange of the index finger are applied as

the rotations of the 3D hand model and its respective joints.

When the marker coordinate from OptiTrack V120: Trio is applied as the posi-

tion of the 3D hand model, and the orientations of the hand and its respective joints

are applied as the rotations of the same 3D hand model, simultaneously, the hand

motion tracking system can then be used to determine the position and orientation

of the human hand in three-dimensional space.

72

CHAPTER 6

IMPLEMENTATION OF THE ORIENTATION CORRECTION

ALGORITHM

Before it was used for the real-time hand motion tracking system, the orienta-

tion correction algorithm, as explained in Chapter 4, was implemented o✏ine, using

MATLAB in order to validate its robustness. In the early stages of the study, we

proposed the idea to correct the orientation using only bias o↵set estimation, quater-

nion estimation and quaternion correction using the gravity vector (not involving

the use of the magnetometer). The algorithm was able to reduce the drift and im-

prove the orientation tracking [47]. However, the accelerometer also measures the

acceleration due to linear motion, when the sensor is in motion. Accordingly, the

accelerometer becomes an unreliable source for orientation correction, under those

circumstances. Later in our study, the direction of Earth’s magnetic field measured

through the magnetometer was used as a secondary reference vector when there is a

rapid motion applied to the measurement unit [52]. This is appropriate because the

magnetometer does not measure the body’s inertial properties. The implementation

of the orientation correction algorithm has evolved throughout the study and will

be presented in this chapter in the chronological order of its evolution.

6.1 Implementation of Orientation Correction Algorithm

Using Gravity Vector

In this stage of the study, the orientation correction algorithm consisted of only

bias o↵set estimation, quaternion estimation, and quaternion correction using the

gravity vector as depicted in the diagram shown in Figure 6.1. The key element

73

Figure 6.1: Block diagram of the orientation correction algorithm using only gravity
vector correction

to e↵ectively apply the orientation correction algorithm to hand motion tracking

application is to be capable of implementing the algorithm in real-time.

6.1.1 Implementation

The angular velocity from the gyroscope and the acceleration measurement from

the accelerometer were streamed and the recordings were stored in a text file with a

sampling rate of 260 samples per second. The data was imported into the MATLAB

workspace, and the algorithm was also implemented using MATLAB. In order to

mimic the real-time constraints, each iteration of the algorithm was aware of only

one sample of data at a time. The reason for implementing the algorithm in MAT-

LAB is to easily evaluate the result obtained from the algorithm. The result of the

estimated orientation in quaternion form was also exported to a text file in order

to be visually evaluated using OpenGL 3D visualization. As shown in Figure 6.2,

the implementation of the algorithm begins by calculating the maximum value in

the three axes of the 50-sample window average of gyroscope data (gyroMaxAvg).

74

This value is the variable that was used to judge the level of movement of the sensor

module. If this value is less than a pre-defined threshold value (gyroThreshold),

the sensor module is considered to be not moving. To verify the static period of

the sensor, this condition has to be true for 25 consecutive samples of gyroscope

data only then the module will be considered static and a new predicted bias error

will be calculated. Otherwise, the unbiased angular rate will continue to be deter-

mined by using the previous predicted bias error. The orientation quaternion is then

calculated based on the unbiased angular rate.

The second part of the algorithm, which is the quaternion correction using gravity

vector, used a di↵erent parameter to determine when sensor is static. This parameter

is called stillness. Stillness is the value that reflects the movement of the sensor

module, which ranges from 0 to 1. A high value of Stillness indicates that the

sensor is in a static condition and thus, the accelerometer measurements will only or

almost only contain the components of acceleration due to gravity. In our algorithm,

if the value of Stillness is greater than pre-defined threshold (stillnessThreshold), the

calculated gravity vector using the quaternion that represents the current orientation

will be determined, and the di↵erence in quaternion (�q) with the measured gravity

vector from the accelerometer will be determined. In the sensor’s static period,

where the Stillness is greater than stillnessThreshold, the estimated orientation will

be updated by the accumulation of�q to the pre-calculated quaternion (q) by means

of quaternion multiplication. Otherwise, the estimated orientation will be equal

to the pre-calculated quaternion (q). The Yost Labs 3-Space Sensor module was

connected to a host PC via USB connection. A C program was written to stream

the data from the sensor and store it in a text file. The evaluation experiment

for this approach was performed by rotating the sensor module in di↵erent axes in

order to verify the validity for any rotating movements. While the sensor module was

75

Figure 6.2: Flowchart showing the implementation of drift correction algorithm
using only gravity vector compensation for one iteration with the condition that the
module should be in a static period (Stillness)

76

rotating, angular velocity and acceleration were recorded with a sampling rate of 260

samples per second. The recorded data was processed by the proposed algorithm,

following the flowchart in Figure 6.2.

6.1.2 Results

The gyroscope and acceleration data recorded from the experiment have the data

length of 17,267 samples from the recording duration of 66.33 seconds. The first

two plots in Figure 6.3 are the raw gyroscope data recordings in units of radians

per second and the predicted bias errors for three coordinate axes (x, y and z)

of the gyroscope. The third plot in Figure 6.3 is the orientation result presented

as the computed quaternion using the unbiased angular rate value. This computed

quaternion is the result of the orientation representation of the sensor module before

applying the correction using gravity vector. The measured gravity vector from the

accelerometer is shown in the first plot of Figure 6.4. Its vertical axis is the strength

of gravity components (in units of g) in each coordinate axis of the sensor frame.

The second plot in Figure 6.4 shows the di↵erence of the measured gravity vector

and the computed gravity vector using the computed quaternion (the 3 color traces

correspond to the di↵erences in the three body frame axes). The resulting estimated

orientation in the form of quaternion after gravity-vector correction, is shown in the

third plot of Figure 6.4. It consists of the four components of the quaternion, which

can be used to describe the orientation of the sensor module.

Both of the quaternion results before and after gravity vector correction were

exported as text files and used in 3D visualization to re-orient a pre-constructed 3D

model of the IMU board. Then, they were verified and compared with the top view

of the actual sensor movement, as shown in Figure 6.5. Figure 6.5(a) shows the se-

77

Figure 6.3: The plots of raw gyroscope data including bias o↵set error, predicted bias
error, quaternion result (without gravity-vector correction). The numbers written
at the bottom of the lower plot identify 9 “poses” or “stages” in which the module
was held temporarily static.

78

Figure 6.4: The plots of measured gravity vector from accelerometer, error between
measured and computed gravity vector, estimated quaternion result (with gravity-
vector correction). The numbers written at the bottom of the lower plot identify 9
“poses” or “stages” in which the module was held temporarily static.

79

quence of 9 actual orientations of the sensor module captured during the recording.

Figure 6.5(b) is the 3D visualization using the orientation quaternion before gravity

vector correction. Figure 6.5(c) shows the estimated orientation sequence of the sen-

sor module rotation using the estimated quaternion after gravity vector correction.

The 9-stage sequences of orientation in Figure 6.5(b) and (c) are the visualization

of the results in the third plots of Figures 6.3 and 6.4, respectively. The numbers

(1-9) in the first column of Figure 6.5 correspond with the (1-9) intervals labeled at

the bottom of Figures 6.3 and 6.4. These “poses” or “stages” were shot intervals in

which the module was held approximately static.

The results obtained by predicting the bias o↵set error shown in Figure 6.3 lead

us to support the use of this approach every time the sensor module is static to

remove the bias o↵set error in the gyroscope reading and produce less drift in orien-

tation. Notice that during the sensor’s static periods, the algorithm calculated the

predicted bias o↵set error. But when the sensor was rotating, the algorithm held the

previous value of the bias o↵set. The result of orientation in the form of quaternion

(q) indicated that we can approximate the orientation of the sensor module but we

can still observe some residual error that deviated from zero in some axes. This

could be because the bias o↵set error prediction might be over-compensating, yield-

ing error levels that still impacted the orientation results. The second part in the

algorithm that could help solving this problem is the quaternion estimation using

gravity vector correction. THe following paragraphs provide additional discussion

of the results of this experiment, shown in Figures 6.3, 6.4 and 6.5

The measured gravity vector, referenced in the sensor frame, is shown in the

first plot of Figure 6.4. This measurement indicates the direction of the gravity

vector in the sensor frame, a↵ected by the rotation of the sensor module. When the

sensor is static, this measurement reflects only the acceleration due to gravity. The

80

Sequence (a) (b) (c)

1

2

3

4

5

6

7

8

9

Figure 6.5: Comparison between sequences of (a) actual sensor module orientation
at each of the 9 “poses” or “stages” identified in Figures 6.3 and 6.4, (b) 3D vi-
sualization of orientation using computed quaternion and (c) 3D visualization of
estimated orientation after gravity vector correction

81

calculated gravity vector using the quaternion result in the first part can be used

to compare with this gravity vector measurement. The error between the measured

and calculated gravity vectors, shown in Figure 6.4, provides the mechanism to

determine the error between two di↵erent sources of measurement (e.g. gyroscope

and accelerometer). We can see that with this idea, we could also determine the

sensor orientation using the measurement of acceleration due to gravity measured

in the sensor’s body frame. The di↵erence between two vectors can be represented

in the form of rotation. In other words, we could achieve the expected orientation

of the sensor if we can determine how much we have to rotate the calculated gravity

vector to match the measured gravity vector. The angular di↵erence between these

two vectors was determined and represented as quaternion (rotation). This angle

di↵erence was then included in the previous calculated quaternion and resulted in the

estimated orientation of the sensor module as shown in Figure 6.4. The result shows

that the method of using the gravity vector to correct the orientation estimation can

help to improve the output. The inclination through time of the quaternion result,

which is the indication of drift problem, was reduced using the gravity vector as the

reference, as can be seen in the quaternion result of Figure 6.4.

To verify these results, the quaternion output from both processes (before and af-

ter application of the gravity vector correction method) were applied to the rotation

of the 3D model (IMU model) as shown in Figures 6.5(b) and 6.5(c). Comparing

both results to the actual movement that had been captured as the pictures in Fig-

ure 6.5(a), leads us to confirm that the estimated quaternion after gravity vector

correction (q̂) provides a better result than before we applied the correction. This

visualization shows that the 3D model using the original computed quaternion in

Figure 6.5(b) becomes misaligned after some rotations were applied to the sensor

module failing to re-align to its initial orientation in stage 9. For example, in Figure

82

6.5, the rotation from stage 1 to stage 2 is the rotation in x-axis by -90 degrees

and then from stage 2 to stage 3, the sensor module was rotated back 90 degrees in

x-axis. The quaternion result in the first part of the algorithm is clearly mismatched

with the actual movement while the 3D model (with gravity-vector correction) in

Figure 6.5(c) improves the orientation. The images captured at di↵erent stages of

the rotating sequence can help to visually verify the improvement of orientation

estimation for the IMU module achieved using the prediction of the bias error and

the gravity vector correction.

6.1.3 Verification of Orientation Correction Algorithm on

Hand Orientation Tracking

An IMU was attached on the glove, at the back of the hand. The angular velocity

and acceleration measurement were streamed from the IMU and stored in a text

file with a sampling rate of 370 samples per second while a sequence of hand move-

ments was performed. The data was imported into the MATLAB workspace, and

the orientation correction algorithm, based on the diagram in Figure 6.1, was im-

plemented. The idea of correcting the orientation estimate and the gyroscope o↵set

value every time the sensor is not moving is well-suited to the hand motion tracking

application, as the human hand is not expected to be moving all the time.

The gyroscope and acceleration data recorded in this evaluation contains 7,581

samples of each variable (duration: 20.51 second). In Figure 6.6, the first plot is the

angular velocity recorded from the gyroscope (raw data). The second plot shows

the 4 quaternion components resulting from the first part of the algorithm (without

gravity vector compensation). The last plot shows the 4 estimated quaternion com-

83

Figure 6.6: (a) Angular Velocity, (b) Quaternion without gravity vector compensa-
tion, (c) Estimated quaternion with gravity vector compensation

84

Sequence (a) (b) (c)

1

2

3

4

Figure 6.7: Comparison between (a) sequences of actual hand orientation, (b) 3D
visualization of hand orientation using computed quaternion and (c) 3D visualization
of estimated hand orientation after gravity vector compensation. (Stages 1 to 4) [All
the pictures in column (a) are taken from the top, except #6 and #8, which are
taken in the back-to-front direction. All the simulated hands are also viewed in the
back-to-front direction.]

85

Sequence (a) (b) (c)

5

6

7

8

9

Figure 6.8: Comparison between (a) sequences of actual hand orientation, (b) 3D
visualization of hand orientation using computed quaternion and (c) 3D visualization
of estimated hand orientation after gravity vector compensation. (Stages 5 to 9) [All
the pictures in column (a) are taken from the top, except #6 and #8, which are
taken in the back-to-front direction. All the simulated hands are also viewed in the
back-to-front direction.]

86

ponents after applying gravity-vector compensation to the orientation estimation

process.

The quaternion output results from Figure 6.6(b) and Figure 6.6(c) were used

to visualize the orientation of the hand by applying the rotations they indicate to a

3D hand model. The sequence of orientations in Figure 6.7 shows the actual hand

orientation, and the corresponding hand visualization of the results from Figure

6.6(b) and from Figure 6.6(c), respectively. The numbers (1-9) used to label the

rows of Figure 6.7 correspond to the (1-9) time points labeled at the bottom of

Figures 6.6(b) and 6.6(c), which identify the 9 “poses” or “stages” at which the

orientations of the real and simulated hands were captured.

The quaternion computed in the first part of the proposed algorithm (without

gravity vector correction) can approximately represent the orientation of the hand.

There was still some drift present in this result but it was better than just the

integration of the angular velocity, without removing the bias o↵set error. Compar-

ing the orientation estimates indicated by the original quaternion and the (gravity

vector) corrected quaternion shows that the latter approximates the real hand ori-

entation better. The drift in rotation was corrected and the orientation estimation

was improved.

6.2 Implementation of Orientation Correction Algorithm

Using Gravity Vector and Magnetic North Vector

This section describes the full implementation of the orientation correction algo-

rithm fully implemented, the orientation correction algorithm includes the bias o↵set

estimation, quaternion estimation, quaternion correction using the gravity vector,

quaternion correction using the magnetic North vector and quaternion interpolation.

87

Figure 6.9: The glove with IMUs attached on the back of the hand and on the tip
of index finger

The implementation of the algorithm is based on the diagram shown in Figure 4.1.

In this stage of the study, the orientation correction algorithm was implemented on

the data recorded from two IMU sensors which tracked the movement of the hand

and the index finger.

6.2.1 Implementation

Two Yost Labs 3-Space Sensor modules were attached on the back of the hand and

on the tip of the index finger as shown in Figure 6.9. The gyroscope, accelerometer

and magnetometer data were recorded and stored in a text file while a sequence

of hand motions were being performed. The orientation correction algorithm was

applied to the recorded data within MATLAB. During the implementation of the

algorithm in MATLAB, the programming code was aware of only one sample of

data at a time in order to imitate real-time performance.

The bias o↵set error must be estimated only when the IMUs detect periods of

stillness. A flowchart showing the implementation of the orientation correction al-

gorithm is displayed in Figure 6.10. The implementations of bias o↵set estimation

88

Figure 6.10: Flowchart showing the implementation of orientation correction algo-
rithm for one iteration using both gravity and magnetic North vector corrections

89

and quaternion estimation are the same as for the implementation of the orienta-

tion correction algorithm using only gravity vector, in Section 6.1. In this section,

The quaternion correction using gravity vector and magnetic North vector are im-

plemented simultaneously. The output quaternion (q̂OUT) is calculated by using

quaternion interpolation between the estimated quaternion correction using gravity

vector (q̂GA) and the estimated quaternion correction using magnetic North vector

(q̂GM). In our experiments, the resulting orientations were exported as a text file and

visualized by the animation of a 3D hand model in Unity. The motion of the hand

model and the index finger with corrected orientation was validated and compared

with snapshots of the hand motion sequence.

6.2.2 Results

Figure 6.11(a) and Figure 6.12(a) show the orientation in quaternion for IMUs

attached on the back of the hand and the index finger, respectively. They were

recorded directly from the sensor modules for a duration of 22.348 seconds. These

recordings are the quaternion output from the Kalman-based orientation filtering in-

side the Yost Labs 3-Space sensor module. The resulting estimated orientation after

gravity vector and magnetic North vector correction for IMUs attached on the back

of the hand and the index finger are shown in Figure 6.11(b) and Figure 6.12(b),

respectively. Comparing the quaternion results from the orientation correction algo-

rithm using gravity and magnetic North vector and the quaternion recording from

the on-board Kalman-based filtering in Figure 6.11, it was found that the result

from the algorithm using gravity and magnetic North vector correction can reduce

the amount of drift that distinctly occurred in Kalman-based filtering estimation

during the 2nd to 5th seconds and 17th to 21st seconds.

90

Figure 6.11: The plots of estimated quaternion results (a) with On-board Kalman-
based Orientation Filtering and (b) with gravity and magnetic North vectors cor-
rection for IMU attached on the back of the hand

Figure 6.12: The plots of estimated quaternion results (a) with On-board Kalman-
based Orientation Filtering and (b) with gravity and magnetic North vectors cor-
rection for IMU attached on the index finger

91

Similarly in Figure 6.12, the quaternion result of the IMU attached on the index

finger from the orientation correction algorithm using gravity and magnetic North

vector and the quaternion recording from the on-board Kalman-based filtering are

compared. This figure shows that the result from the algorithm using gravity and

magnetic North vector correction can also reduce the amount of drift in the quater-

nion result using Kalman-based filtering method that occurred during the 7th to

11th seconds, 12th to 14th seconds and 17th to 21st seconds of the recording.

To verify these results, the quaternion outputs obtained from the gravity and

magnetic North correction algorithm were exported as text files and were applied

to the rotation of the 3D hand model in Unity. Figure 6.13 shows the comparison

between a sequence of actual photographs of the hand orientation and 3D visualiza-

tions of estimated hand orientation after gravity vector and magnetic North vector

correction. Comparing the results to the actual hand orientation, leads us to con-

firm that the estimated quaternion after gravity vector and magnetic North vector

correction provides an acceptable result of orientation tracking using the IMUs. The

9-stage sequences of 3D hand orientation in Figure 6.13 are the visualization of the

quaternion results in Figure 6.11(b) and Figure 6.12(b). The numbers (1-9) to the

left of the stages in Figure 6.13 correspond with the (1-9) intervals labeled at the

bottom of Figure 6.11(b) and Figure 6.12(b). The similarity between the pictures

and the 3D simulations in Figure 6.13 seems to confirm that the proposed approach

to correct the drift in the gyroscope measurements and compensate the orientation

estimation using the gravity vector and magnetic North vector will be useful in ori-

entation tracking of human hand motion. Since the precise data of the hand or the

fingers orientation can be obtained, this can lead to the improvement of 3D user

interfaces to become more realistic. Thus, it could also enhance the experiences of

the natural interaction of humans with a 3D virtual environment.

92

F
ig
u
re

6.
13
:
C
om

p
ar
is
on

b
et
w
ee
n
a
se
qu

en
ce

of
ac
tu
al

h
an

d
or
ie
nt
at
io
n
s
an

d
3D

vi
su
al
iz
at
io
n
s
of

es
ti
m
at
ed

h
an

d
or
ie
n
-

ta
ti
on

af
te
r
gr
av
it
y
ve
ct
or

an
d
m
ag
n
et
ic

N
or
th

ve
ct
or

co
rr
ec
ti
on

93

CHAPTER 7

REAL-TIME IMPLEMENTATION OF HAND MOTION TRACKING

SYSTEM

The hand motion tracking system using inertial measurement units and infrared

cameras has been set up as explained earlier in Chapter 5. In this chapter, the

real-time implementation of hand motion tracking will be presented. To validate

the capability of the hand motion tracking system for 3D user interface purposes,

a 3D environment was created. In this test environment, a human subject was

prompted to perform a task that included the acquisition of several target objects

using the hand motion tracking system in which the orientation correction algorithm

was enabled. The evaluation process is explained in the following sections.

7.1 Creating 3D Environment in Unity

In order to verify the real-time performance of the orientation correction algorithm

using gravity vector and magnetic North vector for the hand motion tracking in-

terface, the algorithm described in Chapter 4 (Orientation Correction Algorithm)

was implemented for real-time execution using a C# script within Unity. To eval-

uate the compatibility of this orientation correction algorithm on the hand motion

tracking interface, a game scene (3D environment) in Unity was created, as shown

in Figure 7.1.

The 3D hand model shown in Figure 7.1 was attached to the C# scripts that

receive the streamed marker position in 3D space and raw accelerometer, gyroscope

and magnetometer data. The marker position from OptiTrack V120:Trio were as-

signed as the position of the 3D hand model. The C# script that receives the

streamed raw accelerometer, gyroscope and magnetometer data also implemented

the orientation correction algorithm using gravity vector and magnetic North vec-

94

Figure 7.1: Unity game scene for testing real-time implementation of the orientation
correction algorithm

tor. For every frame of rendering, the output estimated quaternion (q̂OUT) was

calculated for the hand, proximal phalange, middle phalange and distal phalange.

The quaternions were assigned as the rotations for the respective parts of the hand.

By using the position tracking and orientation tracking results to animate the 3D

hand model, a user will be able to complete the actions required in the virtual task

proposed for the evaluation.

7.2 Evaluating The Hand Motion Tracking Interface Per-

formance

An initial test to assess the strength of the bias o↵set error and the ability of the

orientation correction algorithm to compensate for it was performed on a static

basis. For this, three inertial measurement units (attached to the back of the hand,

proximal and middle phalanges, in a glove) were just left resting on a table. In the

95

absence of motion, all the gyroscopes would be expected to output a value of zero.

The observation, presented in the following sections did not meet this expectation.

To evaluate the performance of the hand motion tracking interface on a dynamic

basis, a game scene with five red cubes (targets) and one blue cube (home position)

was created as shown in Figure 7.1. The experimental subject wore the glove and

was asked to perform a task to acquire the red cubes in 3D space. A single red cube

(target) will appear in the scene after acquiring the blue cube (home position). The

acquisition of the blue cube marks the starting time for the subject to acquire the

red cube. The red cubes are placed in 3D positions that are at equal distances from

the unique position of the blue cube (origin). The time to acquire each red cube

was recorded. The blue cube appeared for the first time after the subject entered

the Subject ID, as shown in Figure 7.2.

In order to acquire each of the cubes in this task, the subject has to flex his/her

index finger while colliding with the cube. The 3D hand model will change its color

to green when the flexion of the index finger is detected, as shown in Figure 7.3.

In every trial, after the blue cube is acquired, a red cube will appear. The subject

will try to complete the trial by moving his/her hand in 3D space to reach the red

cube and flex the index finger to acquire it as shown in Figure 7.4. After the subject

completes a trial by acquiring each of the 5 red cubes, the trial time will be recorded.

When all 5 cubes have been acquired, the total experiment time will be calculated

as the sum of the 5 trial times.

96

Figure 7.2: Initial stage of the play mode when the subject ID is asked

Figure 7.3: The 3D hand model will turn into green indicating the state of flexing

97

Figure 7.4: The red cube will appear after acquiring the blue cube

7.3 Results

7.3.1 Static Test

To perform the static test, all three inertial measurement units were fixed to a table,

to prevent them from moving. The output estimated quaternions for the orienta-

tion of hand, index proximal phalange and index middle phalange were recorded for

5 minutes. The output estimated quaternions were recorded when the orientation

correction algorithm using gravity vector and magnetic North vector are both dis-

abled and enabled. In Figure 7.5, the output estimated quaternions for hand, index

proximal phalange and middle phalange recorded while the orientation correction

algorithm was disabled are shown. The result indicates that the bias o↵set error

causes the angular measurement to drift even though the sensors were placed stati-

98

Figure 7.5: Output estimated quaternions without orientation correction algorithm

cally on the table. It was found that the drifts occurred in di↵erent rates among the

three inertial measurement units. This is because each sensor has a di↵erent bias

o↵set error. After enabling the orientation correction algorithm, the plots in Fig-

ure 7.6 representing the orientation of 0� angle show that the orientation correction

algorithm can improve the estimated quaternion in all three inertial measurement

units. This confirmed that in the static mode (when there is no motion applied

to the sensors) the orientation correction algorithm using gravity vector and mag-

netic North vector e↵ectively improve the orientation measurement using the inertial

measurement units in real-time.

99

Figure 7.6: Output estimated quaternions with orientation correction algorithm

7.3.2 Results from the dynamic task using the Hand Motion

Tracking Interface

To evaluate the performance of the hand motion tracking interface, 30 experiments

(each consisting of the acquisition of 5 red cubes) were performed in the 3D en-

vironment (described in Section 7.2). During these experiments, the orientation

correction algorithm using gravity vector and magnetic North vector was enabled.

The time used to acquire each cube was recorded. The statistical characteristics of

these acquisition time are shown in Table 7.1.

From the results shown in Table 7.1, it can be seen that the 5 acquisition times

in each experiment added to 23.75 seconds on average, with the standard deviation

of 6.38 seconds. The minimum total time was 15.27 seconds, whereas the maximum

total time was 36.02 seconds. The red cube that took the longest time to acquire

100

Table 7.1: Statistical data of the time used to acquire red cubes in 3D environment

Statistic
Values

Time in seconds

1st cube
(front)

2nd cube
(left)

3rd cube
(right)

4th cube
(up)

5th cube
(down)

Total
time

Means 3.34 3.44 5.04 4.60 7.33 23.75
SD 1.04 1.07 1.83 2.01 4.12 6.38
Min 2.05 1.48 2.00 1.38 2.52 15.27
Max 6.45 5.59 8.90 8.77 20.87 36.02

(on average) was the 5th cube, which appeared at the bottom of the screen. It

seems, then, that the 5th red cube was more di�cult to reach, compared to the

other red cubes because its almost out of the OptiTrack V120:Trio field of view.

From the experimental data, it can be verified that the real-time implementation of

the orientation correction algorithm using gravity vector and magnetic North vector

can be e↵ectively applied with the hand motion tracking interface.

As verified by the results, we found that we are able to implement the orientation

correction algorithm using gravity vector and magnetic North vector compensation

in a real-time manner. Our approach is able to correct the drift in the gyroscope

measurements. This method will be one of the e↵ective approaches for the orien-

tation tracking in 3D hand motion tracking interface which can be an alternative

way to achieve interactions between a human and a computer. This can also be a

significant contribution to improvement in the realism of natural human-computer

interactions.

101

CHAPTER 8

STATISTICAL EVALUATION OF HAND MOTION TRACKING

SYSTEM

8.1 Design of Experiment

This chapter describes another experiment that was conducted to comprehensively

evaluate the performance and robustness of the hand motion tracking system. Thirty

human subjects were asked to participate in the experiment. Each of the subjects

wore a glove on his/her left hand and performed hand movement tasks. While

the tasks were being performed, the marker coordinate from OptiTrack V120: Trio

and the data from an inertial measurement unit attached at the back of the hand,

were recorded. The orientation correction algorithm was implemented to calculate

the estimated orientation. The orientation estimates obtained with the orientation

correction algorithm using the gravity vector and magnetic North vector algorithm

are compared with orientation estimates obtained with a fixed bias o↵set, and the

quaternion output from the Kalman-based orientation filtering streamed directly

from the Yost Labs 3-Space sensor module.

8.1.1 Testing Environment Setup

For this evaluation, each subject was asked to wear a glove on his/her left hand

in which an inertial measurement unit was attached at the back of the hand. The

subject was sitting on a chair, having his/her face looking towards a computer

screen in which the OptiTrack V120: Trio was installed (sensor bar placed above

the screen). Between the subject and the computer screen, a rectangular frame with

102

Figure 8.1: Hand motion tracking system testing environment setup

referenced position markers was placed with a fixed distance from the computer

screen. The testing environment was set up as shown in Figure 8.1.

8.1.2 Virtual 3D Environment

A virtual 3D environment was created with Unity, for this evaluation. The virtual 3D

environment consists of a 3D hand model and the rectangular frame with referenced

position markers. The C# script was written and attached to the 3D hand model so

that a sequence of 10 pre-defined movements of the 3D hand model were visualized

as the hand movement guide for the subjects to perform the tasks. The 10 hand

poses involved in the movement sequence for the 3D hand model are depicted as

shown in Figure 8.2 and Figure 8.3.

103

1

2

3

4

5

Figure 8.2: The sequence of the 3D hand model movement (poses 1 to 5)

104

6

7

8

9

10

Figure 8.3: The sequence of the 3D hand model movement (poses 6 to 10)

105

8.2 Experiment Procedure

1. Each subject was asked to wear the glove on his/her left hand and put the

hand into the initial position and orientation. (Pose 1 in Figure 8.2)

2. The experimenter clicked on the button labeled as “Mark this position and

orientation” to record the initial position and orientation of the hand.

3. The experimenter clicked on the button labeled as “Show hand movement”

located on the bottom right corner of the screen, the 3D hand model then

rotated and translated to the next state (pose) of the hand movement sequence.

4. The subject moved his/her hand to match the position and orientation as

shown by the movement guide on the screen.

5. The experimenter clicked on the button labeled as “Mark this position and

orientation” to record the current position and orientation of the subject’s

hand.

6. Steps 3 to 5 of this procedure were repeated until all 10 states or poses of

movement of the 3D hand model had been performed by the subject.

7. The subject was asked to remove the glove and answer the questionnaire about

gender, age, and his/her dominant hand.

8.3 Experimental Results

The referenced values of positions and orientations of the 3D hand model have been

pre-defined within a C# script written for this evaluation. Once the experimenter

clicked on the button labeled as “Mark this position and orientation”, instead of

printing the position and orientation data to a file, the script automatically calcu-

lates the errors of the position and orientation that deviate from referenced data.

106

Equation 8.1 defines the experimental-quaternion result as the quaternion product

of the referenced quaternion and error. By pre-multiplying q
⇤
ref

to both sides of the

equation as shown in Equation 8.2, we obtain the formula to calculate the error in

quaternion form as shown in Equation 8.3. A part of the C# script that performs

the position and orientation error calculation is shown in Listing 8.1. The quater-

nion error for each type of algorithm used to estimate the orientation was calculated

by using the formula from Equation 8.3. The errors were converted into Euler angles

form using a build-in Unity function. Then, the final results (errors) were stored in

a text file.

qref ⌦ qerror = qexp (8.1)

q
⇤
ref

⌦ qref ⌦ qerror = q
⇤
ref

⌦ qexp (8.2)

qerror = q
⇤
ref

⌦ qexp (8.3)

Listing 8.1: Source code to calculate errors in position and orientation

1 // When the button is pressed,

2 if (GUILayout.Button ("Mark this position & orientation")) {

3 // Calculate errors of marker positions

4 PosE.x = Mathf.Abs (Pref [rotCount].x - OptitrackRigidBodyManager.

instance.omPositions [0].x);

5 PosE.y = Mathf.Abs (Pref [rotCount].y - OptitrackRigidBodyManager.

instance.omPositions [0].y);

6 PosE.z = Mathf.Abs (Pref [rotCount].z - OptitrackRigidBodyManager.

instance.omPositions [0].z);

7 // Calculate errors in quaternion form

8 qGfixed0e = myQuatConj (Qref [rotCount]) * qGfixed0;

107

9 IMUQuat0e = myQuatConj (Qref [rotCount]) * IMUQuat0;

10 qOUT0e = myQuatConj (Qref [rotCount]) * qOUT0;

11 // Convert quaternions to Euler angles

12 EulerFixed0e = qGfixed0e.eulerAngles;

13 EulerKalman0e = IMUQuat0e.eulerAngles;

14 EulerGMV0e = qOUT0e.eulerAngles;

15 //Convert angles exceed 180 degrees to negative angles

16 if (EulerFixed0e.x > 180.0)

17 EulerFixed0e.x = -(360.0f - EulerFixed0e.x);

18 if (EulerFixed0e.y > 180.0)

19 EulerFixed0e.y = -(360.0f - EulerFixed0e.y);

20 if (EulerFixed0e.z > 180.0)

21 EulerFixed0e.z = -(360.0f - EulerFixed0e.z);

22

23 if (EulerKalman0e.x > 180.0)

24 EulerKalman0e.x = -(360.0f - EulerKalman0e.x);

25 if (EulerKalman0e.y > 180.0)

26 EulerKalman0e.y = -(360.0f - EulerKalman0e.y);

27 if (EulerKalman0e.z > 180.0)

28 EulerKalman0e.z = -(360.0f - EulerKalman0e.z);

29

30 if (EulerGMV0e.x > 180.0)

31 EulerGMV0e.x = -(360.0f - EulerGMV0e.x);

32 if (EulerGMV0e.y > 180.0)

33 EulerGMV0e.y = -(360.0f - EulerGMV0e.y);

34 if (EulerGMV0e.z > 180.0)

35 EulerGMV0e.z = -(360.0f - EulerGMV0e.z);

36 // Print the results to file

37 System.IO.File.AppendAllText(FileStrMark, System.String.Format("

{0},{1},{2},", Mathf.Abs(EulerFixed0e.x), Mathf.Abs(EulerFixed0e.y)

, Mathf.Abs(EulerFixed0e.z)));

108

38 System.IO.File.AppendAllText(FileStrMark, System.String.Format("

{0},{1},{2},", Mathf.Abs(EulerKalman0e.x), Mathf.Abs(EulerKalman0e.

y), Mathf.Abs(EulerKalman0e.z)));

39 System.IO.File.AppendAllText(FileStrMark, System.String.Format("

{0},{1},{2},", Mathf.Abs(EulerGMV0e.x), Mathf.Abs(EulerGMV0e.y),

Mathf.Abs(EulerGMV0e.z)));

40 System.IO.File.AppendAllText(FileStrMark, System.String.Format("

{0},{1},{2}\n", PosE.x, PosE.y, PosE.z));

41 }

8.4 Statistical Evaluations

A total of 30 test subjects voluntarily participated in our experiment. There were

10 female participants and 20 male participants with their ages ranging from 19 to

55 years old (26.53 years old on average). All participants were healthy and able

to move their hands without any di�culties. Only one participant was left-handed,

the remaining 29 participants had the right hands as their dominant hands.

Table 8.1: Descriptive statistics for errors in position tracking

N Mean Std. Deviation

Error in x 300 .01722576 .042859991
Error in y 300 .01031162 .025989994
Error in z 300 .03526925 .095968643

8.4.1 Position Error Analyses

In our experiment, each subject moved his/her hand and placed it at 10 prescribed

states or poses. The positions of the subjects’ hands in three-dimensional space

109

Figure 8.4: Estimated marginal means of the position errors in x

were recorded. A total of 300 rows of data (30 test subjects ⇥ 10 states of hand

movement) were statistically analyzed using SPSS. The descriptive statistics for the

errors in position tracking are shown in Table 8.1. The position error in the x-axis

is 1.7 cm on average, the mean of position error in the y-axis is 1.0 cm, and 3.5 cm

for the z-axis. The estimated marginal means of the position errors in x, y and z

are shown in Figures 8.4 to 8.6. Notice that the means of position errors for the

4th, 8th and 9th states or poses in all axes are relatively higher than other states in

the movement sequence. This could be because of the less natural hand movements

required for those states, which caused di�culties for the test subjects in trying to

exactly match the pre-defined positions of the hand that were requested.

110

Figure 8.5: Estimated marginal means of the position errors in y

Figure 8.6: Estimated marginal means of the position errors in z

111

8.4.2 Orientation Error Analyses

In our experiment, each subject moved his/her hand through a sequence of 10 hand

poses, or states, while three di↵erent orientation correction algorithms were running

simultaneously to estimate the orientations. The purpose of this experiment is to

evaluate the e↵ects of three di↵erent orientation correction algorithms on the orien-

tation output errors. The orientation errors were calculated under the assumption

that the subjects oriented their hands exactly as required in each pose, aided by

the frame provided. The orientation output errors in the form of Euler Angles (Phi,

Theta and Psi) were calculated for the three orientation correction algorithms which

are: 1.) the orientation correction using fixed bias o↵set (FB), 2.) the correction

using the Kalman-based orientation filtering streamed directly from the Yost Labs

3-Space sensor module (KF), and 3.) the proposed orientation correction using grav-

ity and magnetic North vector (GMV). A total of 900 rows of data (30 test subjects

⇥ 10 states of hand movement ⇥ 3 algorithms) were recorded and statistically ana-

lyzed using SPSS. Table 8.2 shows the estimated means of the orientation errors in

all Euler angles. Notice that the means of the orientation errors for GMV and KF

are less than that of FB in every Euler angle. The means of the orientation errors

for GMV are similar to the means of the orientation errors for KF in every Euler

angle. The estimated marginal means of the orientation errors for Phi, Theta and

Psi are shown in Figure 8.7 to 8.9, respectively.

To test for the e↵ects of three algorithms on the orientation output errors, a mul-

tivariate analysis of variance (MANOVA) was initially suggested. Before performing

an analysis of variance, the data has to be validated on two assumptions, which are

normality of the error and equal variances across treatments. The normality test

is the test for the null hypothesis that the data are normally distributed within

each treatment group. Table 8.3 shows the results of the test statistics Kolmogorov-

112

Table 8.2: Estimated means of the orientation output errors

Dependent Variable Algorithm Mean

Phi FB 11.505
GMV 5.24
KF 5.171

Theta FB 9.288
GMV 4.646
KF 4.258

Psi FB 11.137
GMV 4.854
KF 4.799

Table 8.3: Tests of normality

Kolmogorov-Smirnov Shapiro-Wilk

Algorithm Statistic df Sig. Statistic df Sig.
Phi FB .156 300 .000 .836 300 .000

GMV .151 300 .000 .876 300 .000
KF .182 300 .000 .862 300 .000

Theta FB .114 300 .000 .923 300 .000
GMV .159 300 .000 .842 300 .000
KF .180 300 .000 .817 300 .000

Psi FB .139 300 .000 .889 300 .000
GMV .182 300 .000 .814 300 .000
KF .185 300 .000 .820 300 .000

Table 8.4: Levene’s test of equality of error variances

F df1 df2 Sig.

Phi 29.352 29 870 .000
Theta 21.847 29 870 .000
Psi 26.455 29 870 .000

113

Figure 8.7: Estimated marginal means of the orientation errors for Phi

Smirnov and Shapiro-Wilk, having the p-values for testing normality of 0.000 (the

null hypothesis is rejected), indicating strong evidence that the orientation output

errors are not normally distributed. Table 8.4 shows the results of the test statistics

for the null hypothesis that the error variance of the dependent variable is equal

across treatment groups. The p-values of the test of homogeneity of variances are

0.000 (the null hypothesis is rejected) for all three dependent variables (Phi, Theta

and Psi), indicating strong evidence that the error variances are not equal among

three treatment groups (three algorithms). Since the normality and the homo-

geneity of variance assumptions are not met, the multivariate analysis of variance

(MANOVA) cannot be used as a statistical test model on this data. In this situation,

the Kruskal-Wallis H test is suggested as a nonparametric alternative to the usual

analysis of variance [53]. The Kruskal-Wallis test is a rank-based nonparametric

114

Figure 8.8: Estimated marginal means of the orientation errors for Theta

Figure 8.9: Estimated marginal means of the orientation errors for Psi

115

test, which is used to determine the statistical significance of the di↵erences of a de-

pendent variable across two or more treatment groups [54]. Each dependent variable

(Phi, Theta and Psi) was tested with Kruskal-Wallis on a 0.05 level of significance

to determine if there is a di↵erence in means across the three algorithms. Figure

8.10 shows the test statistics for the orientation output errors in the Euler angle Phi,

across three algorithms, in which the null hypothesis is that the distribution of ori-

entation errors in Phi is the same across the three algorithms. The result indicates

that there is a statistically significant di↵erence between the orientation errors in

Phi produced by di↵erent algorithms (H(2) = 80.773, p = 0.000), with a mean rank

of 560.48 for FB, 400.60 for GMV and 390.43 for KF. For a pairwise comparisons

among three algorithms, the results indicate that there are statistically significant

di↵erences of the orientation errors in Phi between KF and FB (p = 0.000) and be-

tween GMV and FB (p = 0.000). There is no statistically significant di↵erence of the

orientation errors in Phi between KF and GMV (p = 0.632). Figure 8.11 shows the

test statistics for the orientation output errors in the Euler angle Theta, across the

three algorithms, in which the null hypothesis is that the distribution of orientation

errors in Theta is the same across the three algorithms. The result indicates that

there is a statistically significant di↵erence between the orientation errors in Theta

produced by di↵erent algorithms (H(2) = 89.439, p = 0.000), with a mean rank

of 565.57 for FB, 404.86 for GMV and 381.06 for KF. For a pairwise comparisons

among three algorithms, the results indicate that there are statistically significant

di↵erences of the orientation output errors in Theta between KF and FB (p = 0.000)

and between GMV and FB (p = 0.000). There is no statistically significant di↵er-

ence of the orientation errors in Theta between KF and GMV (p = 0.262). Figure

8.12 shows the test statistics for the orientation output errors in the Euler angle Psi,

across the three algorithms, in which the null hypothesis is that the distribution of

116

orientation errors in Psi is the same across the three algorithms. The result indicates

that there is a statistically significant di↵erence between the orientation errors in

Psi produced by di↵erent algorithms (H(2) = 89.528, p = 0.000), with a mean rank

of 566.37 for FB, 396.26 for GMV and 388.87 for KF. For a pairwise comparisons

among three algorithms, the results indicate that there are statistically significant

di↵erences of the orientation errors in Psi between KF and FB (p = 0.000) and

between GMV and FB (p = 0.000). There is no statistically significant di↵erence of

the orientation errors in Psi between KF and GMV (p = 0.728).

Figures 8.7, 8.8 and 8.9 show the estimated marginal means of the orientation

errors found using the 3 correction methods. The errors in Euler angles for the

orientation correction algorithm using the gravity vector and magnetic North vector

(GMV) are similar to the errors in Euler angles for the on-board Kalman-based

orientation filtering (KF), for every hand movement in the sequence. The large

amount of orientation errors from both GMV and KF in some poses could be caused

by the di�culty experienced by the subjects in trying to exactly match the pre-

defined orientations of the hand requested on the computer screen. It is possible

that the amount of orientation errors for both algorithms could in fact be smaller,

and both algorithms could estimate the actual orientation of the hand.

The statistical analyses show that the orientation correction algorithm using

gravity vector and magnetic North vector can significantly reduce the errors in ori-

entation tracking when comparing to the orientation correction algorithm using fixed

bias o↵set. The orientation correction algorithm using gravity vector and magnetic

North vector is able to estimate the orientation with no significant di↵erence from

the Kalman-based orientation filtering.

117

F
ig
u
re

8.
10
:
R
es
u
lt
s
of

K
ru
sk
al
-W

al
li
s
te
st

st
at
is
ti
cs

fo
r
th
e
or
ie
nt
at
io
n
er
ro
rs

in
th
e
E
u
le
r
an

gl
e
P
h
i,
ac
ro
ss

th
re
e
d
i↵
er
en
t

al
go
ri
th
m
s.

(I
n
th
e
b
ox

p
lo
t,
ci
rc
le
s
ar
e
ou

tl
ie
rs

an
d
as
te
ri
sk
s
ar
e
ex
tr
em

e
ou

tl
ie
rs
.)

118

F
ig
u
re

8.
11
:
R
es
u
lt
s
of

K
ru
sk
al
-W

al
li
s
te
st

st
at
is
ti
cs

fo
r
th
e
or
ie
nt
at
io
n
er
ro
rs

in
th
e
E
u
le
r
an

gl
e
T
h
et
a,

ac
ro
ss

th
re
e

d
i↵
er
en
t
al
go
ri
th
m
s.

(I
n
th
e
b
ox

p
lo
t,
ci
rc
le
s
ar
e
ou

tl
ie
rs

an
d
as
te
ri
sk
s
ar
e
ex
tr
em

e
ou

tl
ie
rs
.)

119

F
ig
u
re

8.
12
:
R
es
u
lt
s
of

K
ru
sk
al
-W

al
li
s
te
st

st
at
is
ti
cs

fo
r
th
e
or
ie
nt
at
io
n
er
ro
rs

in
th
e
E
u
le
r
an

gl
e
P
si
,
ac
ro
ss

th
re
e
d
i↵
er
en
t

al
go
ri
th
m
s.

(I
n
th
e
b
ox

p
lo
t,
ci
rc
le
s
ar
e
ou

tl
ie
rs

an
d
as
te
ri
sk
s
ar
e
ex
tr
em

e
ou

tl
ie
rs
.)

120

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

This dissertation presented a novel approach in building a system which is capable

of determining the position and orientation of the human hand in three-dimensional

space, and track the movement of the hand in real-time using MEMS inertial mea-

surement units and infrared cameras. Our research focused on the study and imple-

mentation of an algorithm to correct the gyroscope drift, which is a major problem

found when using commercial-grade MEMS inertial measurement units for several

applications. Gyroscope drift is caused by an artifactual non-zero angular velocity

measurement generated while the sensor is static (not in motion). This erroneous

gyroscope output produced while there is no input force applied to the inertial mea-

surement unit is called bias o↵set error. To determine the orientation, the angular

velocity is mathematically integrated. Therefore, the bias o↵set error in the angular

velocity reading can be accumulated and produce large amounts of orientation error

that grows proportionally to time.

A novel algorithm to improve the IMU orientation estimation was proposed and

evaluated. The algorithm begins with the prediction of the bias o↵set error by using

a simple linear regression model to calculate the bias o↵set error every time when the

sensor module is in a static period. When the IMU is not in motion, the gyroscope

is supposed to ideally produce the reading of zero. The actual measurement at that

time can be used to predict the bias o↵set error. Results obtained by compensation

using the predicted bias o↵set error show that the algorithm can be used to predict

the value while the sensor is not moving and continue to use the same bias o↵set

error while the sensor is not stationary. The unbiased angular velocity was then

121

calculated by subtracting the gyroscope measurement with the predicted bias o↵set

error previously calculated. This unbiased angular velocity was used to determine

the orientation in a quaternion form. This result of the computed quaternion can

approximately represent the orientation of the sensor module. However, by only

removing the bias o↵set error, there was still some drift presented in the orientation

result.

The computed quaternion was then corrected utilizing the gravity vector and the

magnetic North vector. For these correction, the computed quaternion was used to

calculate the gravity vector and the magnetic North vector referenced in the sensor’s

body frame. The calculated gravity vector and calculated magnetic North vector

were compared with the measured gravity vector and measured magnetic North

vector obtained from accelerometer and magnetometer, respectively. The di↵erence

between calculated and measured gravity vectors, and the di↵erence between calcu-

lated and measured magnetic North vectors were determined. These di↵erences can

be expressed in quaternion form and can be used to correct the original quaternion

result to obtain corrected quaternion estimates of the sensor’s orientation based

on gravity vector and the magnetic North vector corrections, respectively. Then,

quaternion interpolation was applied in order to determine the final quaternion

estimation by having the control parameter (↵) to interpolate between corrected

quaternion based on the gravity vector (↵ = 1) and corrected quaternion based on

the magnetic North vector (↵ = 0). The control parameter (↵) ranging in value

from 0 to 1, was derived from the sensor’s stillness parameter. The higher value

of ↵ (closer to 1) indicates that the sensor is in static period and the final quater-

nion estimation tends to follow the corrected quaternion based on the gravity vector

rather than the corrected quaternion based on the magnetic North vector.

122

The orientation correction algorithm was preliminarily implemented o✏ine on

previously recorded data in order to validate its robustness before applying it to

real-time performance. The IMU data was recorded while a subject wearing an

instrumented glove performed pre-planned hand movements. By comparing between

a sequence of actual hand orientations and 3D visualizations of estimated hand

orientations corrected using gravity vector and magnetic North vector correction,

confirmed that the proposed correction method provides acceptable results for hand

orientation tracking using the IMUs.

The orientation correction algorithm was then adapted and implemented in real-

time using Unity. In this implementation, the hand position was estimated from the

position of a marker in the wrist of the glove detected by the OptiTrack V120: Trio

system, while the orientation was estimated from IMU signals. The real-time results

verified that the implementation of the algorithm was able to correct the drift in the

gyroscope measurements for the static test and can be e↵ectively applied for hand

motion tracking in a real-time manner.

The proposed 3D hand motion tracking system has been verified to be capable

of combining two di↵erent sources of information (orientation from the IMU and

position from the infrared cameras) in order to be aware of the human hand motion

in real-time. The validation of the 3D hand motion tracking system was performed

by a human subject study in which 30 volunteers completed a hand-movement task.

In the experiment, the participants wore the glove with the IMU attached on the

back of the hand and performed hand movements according to a hand movement

guide shown on the computer screen. For each participant, 10 sets of the orientation

and position data corresponding to the 10 pre-defined states of movement (poses)

of the 3D hand model were recorded. The statistical analysis shows that the error

of position tracking is 1.7 cm on average in the x-axis, 1.0 cm on average in the

123

y-axis, and 3.5 cm on average in the z-axis. The Kruskal-Wallis tests show that

the orientation correction algorithm using gravity vector and magnetic North vector

can significantly reduce the errors in orientation tracking when comparing to the

orientation correction algorithm using fixed bias o↵set. The pairwise comparison be-

tween the orientation correction algorithm using gravity vector and magnetic North

vector and the on-board Kalman-based orientation filtering indicates that there is

no statistically significant di↵erence of the orientation output errors for Phi, Theta

and Psi with p-values of 0.632, 0.262 and 0.728, respectively. (i.e. The orienta-

tion correction algorithm using gravity vector and magnetic North vector is able to

estimate the orientation with no significant di↵erence from the Kalman-based orien-

tation filtering.) However, the orientation correction algorithm using gravity vector

and magnetic North vector provides the flexibility in selecting the source of reference

for the correction (i.e., accelerometer or magnetometer), depending on each di↵erent

circumstance of measurement. Moreover, unlike Kalman-based orientation filtering,

the orientation correction algorithm using gravity vector and magnetic North vector

does not require the initializations of noise covariance and uncertainty matrices.

Results from the proposed orientation correction algorithm suggest that this

may be one of the e↵ective approaches that will enable orientation tracking in 3D

hand motion tracking interfaces, which may provide alternative ways for a human to

interact with a computer. The development of hand motion tracking systems using

inertial measurement units and infrared cameras can be a significant contribution

to the improvement in the realism of natural human-computer interactions within

a 3D virtual environment.

It should be noted that one key advantage of the orientation correction ap-

proach proposed in this dissertation over other standard approaches (e.g., Kalman

Filtering) is that it handles both sources of information used for correction: ac-

124

celeration measurements and magnetometer measurements on parallel tracks that

remain completely distinguishable and modifiable throughout the complete execu-

tion of the correction algorithm. This opens up the possibility of dynamically (in

real-time) changing the parameters that define the use of each of these sources of

information and the weight that each of them is given in defining the final correction

of the orientation estimate quaternion in each iteration. In the future, this prop-

erty may pave the way to the development of orientation correction algorithms that

change their operating parameters during use, to improve their performance after

they are used in a specific location.

9.2 Future Work

In this work, the ↵ as the parameter used to determine the final quaternion output

was calculated from the Yost Labs 3-Space sensor’s internal parameter called “confi-

dence value” which indicates the sensor’s stillness. In the future, it is expected that

our orientation correction algorithm could be improved to be generalized that all

control parameters will be determined from the inertial measurements (accelerations,

angular velocity) themselves. When the IMU is in motion and the accelerometer

measures not only the acceleration due to gravity but also the acceleration due

to linear motion, the measurements from accelerometer can no longer be used as

reliable references to correct the orientation.

In those cases, a low value of ↵ interpolates the final quaternion to rely more

on the quaternion correction using the magnetic North vector because it is not

a↵ected by the motion of the IMU. However, in some circumstances, the magnetic

field around the user might not be uniform, due to the presence of ferromagnetic

objects. This may degrade the overall orientation estimation when the hand is

125

located in certain space regions. This situation could be improved if the directions

of the magnetic field in any particular positions around the user are known. The

continued study of the orientation correction algorithm could focus on the modeling

of the magnetic field around the user and the additional orientation correction when

the IMU is in motion at any di↵erent positions in 3D space due to non-uniform

magnetic field.

The full hand motion tracking system could further be improved by adding more

inertial measurement units at the remaining fingers and thumb so that the system

can be utilized for more natural 3D user interface in virtual environment such as

grabbing, holding objects or performing more diverse hand gestures.

126

BIBLIOGRAPHY

[1] X. Zhang, X. Liu, S.-M. Yuan, and S.-F. Lin, “Eye tracking based control
system for natural human-computer interaction,” Computational Intelligence
and Neuroscience, vol. 2017, 2017.

[2] M.-C. Roh, D. Kang, S. Huh, and S.-W. Lee, “A virtual mouse interface with
a two-layered bayesian network,” Multimedia Tools and Applications, vol. 76,
no. 2, pp. 1615–1638, 2017. ID: Roh2017.

[3] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of hand
gestures for human-computer interaction: A review,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 677–695, 1997.

[4] R. Mccall, S. O’Neil, and F. Carroll, Measuring presence in virtual environ-
ments. ACM, 2004. ID: acm985934; ACM Digital Library; ACM Digital Library
(Association for Computing Machinery); KESLI (ACM Digital Library).

[5] M. Slater, M. Usoh, and A. Steed, “Depth of presence in virtual environments,”
Presence: Teleoperators & Virtual Environments, vol. 3, no. 2, pp. 130–144,
1994.

[6] M. Slater and S. Wilbur, “A framework for immersive virtual environments
(five),” Presence: Teleoperators & Virtual Environments, vol. 6, no. 6, p. 603,
1997.

[7] C. Heeter, “Being there: The subjective experience of presence,” Presence:
Teleoperators and Virtual Environments, vol. 1, no. 2, pp. 262–271, 1992. doi:
10.1162/pres.1992.1.2.262; 07.

[8] S. Sukkarieh and E. M. Nebot, “A high integrity imu/gps navigation loop for
autonomous land vehicle applications,” IEEE Transactions on Robotics & Au-
tomation, vol. 15, no. 3, p. 572, 1999.

[9] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe, “Mobile robot position-
ing sensors and techniques,” NAVAL COMMAND CONTROL AND OCEAN
SURVEILLANCE CENTER RDT AND E DIV SAN DIEGO CA, 1997.

[10] J. L. Marins, X. Yun, E. R. Bachmann, R. B. McGhee, and M. J. Zyda, “An
extended kalman filter for quaternion-based orientation estimation using marg
sensors,” in Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 4, pp. 2003–2011, IEEE, 2001.

127

[11] X. Yun and E. R. Bachmann, “Design, implementation, and experimental re-
sults of a quaternion-based kalman filter for human body motion tracking,”
IEEE Transactions on Robotics, vol. 22, no. 6, pp. 1216–1227, 2006.

[12] X. Yun, M. Lizarraga, E. R. Bachmann, and R. B. McGhee, “An improved
quaternion-based kalman filter for real-time tracking of rigid body orienta-
tion,” in Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, vol. 2, pp. 1074–1079, IEEE, 2003.

[13] S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of imu and
marg orientation using a gradient descent algorithm,” in Rehabilitation Robotics
(ICORR), 2011 IEEE International Conference on, pp. 1–7, IEEE, 2011.

[14] S. Madgwick, “An e�cient orientation filter for inertial and inertial/magnetic
sensor arrays,” Report x-io and University of Bristol (UK), vol. 25, 2010.

[15] E. R. Bachmann, I. Duman, U. Y. Usta, R. B. McGhee, X. P. Yun, and M. J.
Zyda, “Orientation tracking for humans and robots using inertial sensors,”
in Computational Intelligence in Robotics and Automation, 1999. CIRA’99.
Proceedings. 1999 IEEE International Symposium on, pp. 187–194, IEEE, 1999.

[16] X. Kong, “Ins algorithm using quaternion model for low cost imu,” Robotics
and Autonomous Systems, vol. 46, no. 4, pp. 221–246, 2004.

[17] J. L. Hernandez-Rebollar, R. W. Lindeman, and N. Kyriakopoulos, “A multi-
class pattern recognition system for practical finger spelling translation,” in
Multimodal Interfaces, 2002. Proceedings. Fourth IEEE International Confer-
ence on, pp. 185–190, IEEE, 2002.

[18] T. D. Bui and L. T. Nguyen, “Recognizing postures in vietnamese sign language
with mems accelerometers,” IEEE sensors journal, vol. 7, no. 5, pp. 707–712,
2007.

[19] J.-H. Kim, N. D. Thang, and T.-S. Kim, “3-d hand motion tracking and gesture
recognition using a data glove,” in Industrial Electronics, 2009. ISIE 2009.
IEEE International Symposium on, pp. 1013–1018, IEEE, 2009.

[20] T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and J. A.
Landay, “Enabling always-available input with muscle-computer interfaces,” in
Proceedings of the 22nd annual ACM symposium on User interface software
and technology, pp. 167–176, ACM, 2009.

128

[21] X. Zhang, X. Chen, W.-h. Wang, J.-h. Yang, V. Lantz, and K.-q. Wang, “Hand
gesture recognition and virtual game control based on 3d accelerometer and
emg sensors,” in Proceedings of the 14th international conference on Intelligent
user interfaces, pp. 401–406, ACM, 2009.

[22] K.-Y. Chen, K. Lyons, S. White, and S. Patel, “utrack: 3d input using two
magnetic sensors,” in Proceedings of the 26th annual ACM symposium on User
interface software and technology, pp. 237–244, ACM, 2013.

[23] C.-S. Fahn and H. Sun, “Development of a fingertip glove equipped with mag-
netic tracking sensors,” Sensors, vol. 10, no. 2, pp. 1119–1140, 2010.

[24] K. N. Tarchanidis and J. N. Lygouras, “Data glove with a force sensor,” IEEE
Transactions on Instrumentation and measurement, vol. 52, no. 3, pp. 984–989,
2003.

[25] G. Saggio, F. Giannini, M. Todisco, and G. Costantini, “A data glove based sen-
sor interface to expressively control musical processes,” in Advances in Sensors
and Interfaces (IWASI), 2011 4th IEEE International Workshop on, pp. 192–
195, IEEE, 2011.

[26] A. Tognetti, N. Carbonaro, G. Zupone, and D. De Rossi, “Characterization
of a novel data glove based on textile integrated sensors,” in Engineering in
Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Con-
ference of the IEEE, pp. 2510–2513, IEEE, 2006.

[27] K. Kurita, “Non-contact and non-attached human hand motion sensing tech-
nique for application to the human machine interface,” in SICE Annual Con-
ference 2010, Proceedings of, pp. 3536–3539, IEEE, 2010.

[28] C. Nölker and H. Ritter, “Detection of fingertips in human hand movement
sequences,” in International Gesture Workshop, pp. 209–218, Springer, 1997.

[29] O. Rumyantsev, M. Merati, and V. Ramachandran, “Hand sign recognition
through palm gesture and movement,” Image Processing, 2012.

[30] E.-J. Ong and R. Bowden, “A boosted classifier tree for hand shape detection,”
in Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE
International Conference on, pp. 889–894, IEEE, 2004.

[31] M. Alsheakhali, A. Skaik, M. Aldahdouh, and M. Alhelou, “Hand gesture recog-
nition system,” Information & Communication Systems, vol. 132, 2011.

129

[32] S. Park, S. Yu, J. Kim, S. Kim, and S. Lee, “3d hand tracking using kalman
filter in depth space,” EURASIP Journal on Advances in Signal Processing,
vol. 2012, no. 1, p. 36, 2012.

[33] M. Elgendi, F. Picon, and N. Magenant-Thalmann, “Real-time speed detection
of hand gesture using, kinect,” in Proc. Workshop on Autonomous Social Robots
and Virtual Humans, The 25th Annual Conference on Computer Animation
and Social Agents (CASA 2012), 2012.

[34] D. Titterton, J. L. Weston, and J. Weston, Strapdown inertial navigation tech-
nology, vol. 17. IET, 2004.

[35] J. B. Kuipers, Quaternions and rotation sequences: a primer with applications
to orbits, aerospace, and virtual reality. Princeton, N.J: Princeton University
Press, 1999. ID: 024971770; Includes bibliographical references (p. 365-366)
and index.

[36] J.-L. Blanco, “A tutorial on se (3) transformation parameterizations and on-
manifold optimization,” University of Malaga, Tech. Rep, vol. 3, 2010.

[37] P. Aggarwal, MEMS-based integrated navigation. Artech House, 2010.

[38] L. Lin and A. P. Pisano, “Silicon-processed microneedles,” Journal of Micro-
electromechanical Systems, vol. 8, no. 1, pp. 78–84, 1999.

[39] M. Gad-el Hak, The MEMS handbook. CRC press, 2001.

[40] H. Hou, Modeling inertial sensors errors using Allan variance. University of
Calgary, Department of Geomatics Engineering, 2004.

[41] N. El-Sheimy, H. Hou, and X. Niu, “Analysis and modeling of inertial sensors
using allan variance,” IEEE Transactions on instrumentation and measure-
ment, vol. 57, no. 1, pp. 140–149, 2008.

[42] P. Aggarwal, Z. Syed, X. Niu, and N. El-Sheimy, “A standard testing and
calibration procedure for low cost mems inertial sensors and units,” The Journal
of Navigation, vol. 61, no. 2, pp. 323–336, 2008.

[43] N. El-Sheimy, “Inertial techniques and ins/dgps integration,” Engo 623-Course
Notes, pp. 170–182, 2006.

130

[44] R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and applied
Kalman filtering, vol. 3. Wiley New York, 1992.

[45] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to linear re-
gression analysis, vol. 821. John Wiley & Sons, 2012.

[46] R. G. Valenti, I. Dryanovski, and J. Xiao, “Keeping a good attitude: A
quaternion-based orientation filter for imus and margs,” Sensors, vol. 15, no. 8,
pp. 19302–19330, 2015.

[47] N. O-larnnithipong and A. Barreto, “Gyroscope drift correction algorithm for
inertial measurement unit used in hand motion tracking,” in 2016 IEEE SEN-
SORS, pp. 1–3, 2016.

[48] E. B. Dam, M. Koch, and M. Lillholm, Quaternions, interpolation and anima-
tion, vol. 2. Datalogisk Institut, Kbenhavns Universitet, 1998.

[49] J. C. Principe, J.-M. Kuo, and S. Celebi, “An analysis of the gamma memory
in dynamic neural networks,” IEEE transactions on Neural Networks, vol. 5,
no. 2, pp. 331–337, 1994.

[50] J. C. Principe, B. De Vries, and P. G. De Oliveira, “The gamma-filter-a new
class of adaptive iir filters with restricted feedback,” IEEE Transactions on
Signal Processing, vol. 41, no. 2, pp. 649–656, 1993.

[51] H. H. Ip and C. S. Chan, “Dynamic simulation of human hand motion using an
anatomically correct hierarchical approach,” in Systems, Man, and Cybernetics,
1997. Computational Cybernetics and Simulation., 1997 IEEE International
Conference on, vol. 2, pp. 1307–1312, IEEE, 1997.

[52] O. Nonnarit, A. Barreto, S. Tangnimitchok, N. Ratchatanantakit, et al., “Ori-
entation correction for a 3d hand motion tracking interface using inertial mea-
surement units,” in International Conference on Human-Computer Interaction,
pp. 321–333, Springer, 2018.

[53] D. C. Montgomery, Design and analysis of experiments. John wiley & sons,
2017.

[54] A. Field, Discovering statistics using SPSS. Sage publications, 2009.

131

APPENDICES

132

Appendix A

Source Codes of The O✏ine Implementation of Orientation Correction Algorithm

using Gravity Vector and Magnetic North Vector

133

Listing A.1: Source Code to Implement The Orientation Correction Algorithm

1 % Read recording data from file

2 [label,t,Stillness,GyroXYZ,AcceleroXYZ,IMUquat,MagnetoXYZ] =

readRecordingFile(FILENAME);

3 % Setting of Parameters

4 GYRO_THRSHLD = 0.2;

5 buffSize = 50;

6 B_SCALING = 1.00;

7 trigcount = 0;

8 % Initilization of Arrays

9 N = length(t); % Number of Samples

10 SR = N / t(end); % Sampling Rate

11 gyroBuff = zeros(buffSize,3);

12 gyroMaxAbsAvg = zeros(N,1);

13 acceleroBuff = zeros(buffSize,3);

14 acceleroAvg = zeros(N,3);

15 magnetoBuff = zeros(buffSize,3);

16 magnetoAvg = zeros(N,3);

17 Bias = zeros(N,3);

18 UnbiasedXYZ = zeros(N,3);

19 alpha = ones(size(Stillness));

20 dt = 1/SR; % Sampling Time

21 qG = zeros(N,4); qG(1,:) = [0 0 0 1];

22 dqG = zeros(N,4);

23 qGA = zeros(N,4); qGA(1,:) = [0 0 0 1];

24 dqGA = zeros(N,4);

25 qGM = zeros(N,4); qGM(1,:) = [0 0 0 1];

26 dqGM = zeros(N,4);

27 qOUT = zeros(N,4);

28 A_int = [AcceleroXYZ(1,:) 0]; % Measured gravity vector

29 a4 = zeros(N,4); % Computed Gravity Vector (Pure Quaternion)

30 a3 = zeros(N,3); % Computed Gravity Vector (3D-vector)

134

31 M_int = [MagnetoXYZ(1,:) 0]; % Measured magnetic North vector

32 m4 = zeros(N,4); % Computed Magnetic North Vector (Pure Quaternion)

33 m3 = zeros(N,3); % Computed Magnetic North Vector (3D-vector)

34 % For every single sample put into the buffer

35 for i=1:1:N-buffSize

36 gyroBuff = GyroXYZ(i:i+buffSize-1,:);

37 gyroMaxAbsAvg(i) = max(abs(mean(gyroBuff)));

38 acceleroBuff = AcceleroXYZ(i:i+buffSize-1,:);

39 acceleroAvg(i,:) = mean(acceleroBuff);

40 magnetoBuff = MagnetoXYZ(i:i+buffSize-1,:);

41 magnetoAvg(i,:) = mean(magnetoBuff);

42 if(i˜=1)

43 Bias(i,:) = Bias(i-1,:);

44 end

45 if(gyroMaxAbsAvg(i) < GYRO_THRSHLD)

46 trigcount = trigcount+1;

47 else

48 trigcount = 0;

49 Bias(i,:) = mean(Bias(1:i-1,:));

50 end

51 % Recalculate Bias if gyroMaxAbsAvg(i) < GYRO_THRSHLD for 25 samples

52 if(trigcount == 25)

53 [LL,UL] = deal(i,i+buffSize-1);

54 tt=LL:UL;

55 b1x = ((tt-mean(tt))*(GyroXYZ(LL:UL,1)-mean(GyroXYZ(LL:UL,1))))/sum((

tt-mean(tt)).ˆ2);

56 b0x = mean(GyroXYZ(LL:UL,1))-b1x*mean(tt);

57 Bias(i,1) = b0x+b1x*i;

58 b1y = ((tt-mean(tt))*(GyroXYZ(LL:UL,2)-mean(GyroXYZ(LL:UL,2))))/sum((

tt-mean(tt)).ˆ2);

59 b0y = mean(GyroXYZ(LL:UL,2))-b1y*mean(tt);

60 Bias(i,2) = b0y+b1y*i;

135

61 b1z = ((tt-mean(tt))*(GyroXYZ(LL:UL,3)-mean(GyroXYZ(LL:UL,3))))/sum((

tt-mean(tt)).ˆ2);

62 b0z = mean(GyroXYZ(LL:UL,3))-b1z*mean(tt);

63 Bias(i,3) = b0z+b1z*i;

64 trigcount = 0;

65 end

66 % Removing Gyroscope Bias

67 UnbiasedXYZ(i,:) = GyroXYZ(i,:) - (B_SCALING * Bias(i,:));

68 % Compute Quaternions

69 if(i˜=1)

70 % Augment 0 to Angular Velocity

71 w = [UnbiasedXYZ(i,1),UnbiasedXYZ(i,2),UnbiasedXYZ(i,3),0];

72 % Quaternion Calculations

73 dqG(i,:) = 0.5 * myQuatProd(qG(i-1,:),w);

74 qG(i,:) = myQuatIntegrate(dqG(i,:),qG(i-1,:),dt);

75 qG(i,:) = myQuatNormalize(qG(i,:));

76 dqGA(i,:) = 0.5 * myQuatProd(qGA(i-1,:),w);

77 qGA(i,:) = myQuatIntegrate(dqGA(i,:),qGA(i-1,:),dt);

78 qGA(i,:) = myQuatNormalize(qGA(i,:));

79 dqGM(i,:) = 0.5 * myQuatProd(qGM(i-1,:),w);

80 qGM(i,:) = myQuatIntegrate(dqGM(i,:),qGM(i-1,:),dt);

81 qGM(i,:) = myQuatNormalize(qGM(i,:));

82 end

83 % Compute Gravity Vector (y = q’ * m * q)

84 a4(i,:) = myQuatProd(myQuatConj(qGA(i,:)),myQuatProd(A_int,qGA(i,:)));

85 a3(i,:) = a4(i,1:3); % Convert pure quaternion to 3D Vector

86 % Compute Magnetic North Vector (y = q’ * m * q)

87 m4(i,:) = myQuatProd(myQuatConj(qGM(i,:)),myQuatProd(M_int,qGM(i,:)));

88 m3(i,:) = m4(i,1:3); % Convert pure quaternion to 3D Vector

89 % Compute Difference in Quaternion

90 v2 = a3(i,:); % Computed Gravity Vector

91 v1 = acceleroAvg(i,:); % Measured Gravity Vector

136

92 qv = cross(v1,v2);

93 qw = sqrt((v1(1)ˆ2+v1(2)ˆ2+v1(3)ˆ2) * (v2(1)ˆ2+v2(2)ˆ2+v2(3)ˆ2)) +

dot(v1,v2);

94 deltaQa = myQuatNormalize([qv,qw]);

95 v2 = m3(i,:); % Computed Magnetic North Vector

96 v1 = magnetoAvg(i,:); % Measured Magnetic North Vector

97 qv = cross(v1,v2);

98 qw = sqrt((v1(1)ˆ2+v1(2)ˆ2+v1(3)ˆ2) * (v2(1)ˆ2+v2(2)ˆ2+v2(3)ˆ2)) +

dot(v1,v2);

99 deltaQm = myQuatNormalize([qv,qw]);

100 % Quaternion Interpolation

101 alpha(i) = mean(Stillness(i:i+buffSize-1))ˆ2;

102 qGM(i,:) = myQuatNormalize(myQuatProd(qGM(i,:),deltaQm));

103 qGA(i,:) = myQuatNormalize(myQuatProd(qGA(i,:),deltaQa));

104 qOUT(i,:) = QSLERP(qGM(i,:),qGA(i,:),alpha(i));

105 end

Listing A.2: Function to Compute Quaternion Product (myQuatProd.m)

1 % syntax: r = myQuatProd(q,w)

2 % where r, q and w are 4-element row vectors

3 % representing quaternion with its real part located at the last

component.

4 function r = myQuatProd(q,w)

5

6 r = [w(4), w(3),-w(2),w(1);

7 -w(3), w(4), w(1),w(2);

8 w(2),-w(1), w(4),w(3);

9 -w(1),-w(2),-w(3),w(4)] * transpose(q);

10

11 r = transpose(r);

12 end

137

Listing A.3: Function to Integrate Quaternion Rate (myQuatIntegrate.m)

1 % dq = quaternion rate

2 % q0 = quaternion from the previous state

3 % dt = sampling time

4 % q1 = resultant quaternion

5 function q1 = myQuatIntegrate(dq,q0,dt)

6 w = 2 * myQuatProd(dq,myQuatConj(q0));

7 exp_q = myQuatExp((w * dt)/2);

8 q1 = myQuatProd(exp_q,q0);

9 end

Listing A.4: Function to Calculate Quaternionic Exponential (myQuatExp.m)

1 function exp_q = myQuatExp(q)

2 qvnorm2 = sqrt(q(1)ˆ2 + q(2)ˆ2 + q(3)ˆ2);

3 if(qvnorm2 ˜= 0)

4 exp_q = exp(q(4))*[(sin(qvnorm2)/qvnorm2)*q(1:3), cos(qvnorm2)];

5 else

6 exp_q = exp(q(4))*[q(1:3), cos(qvnorm2)];

7 end

8 end

Listing A.5: Function to Normalize Quaternion (myQuatNormalize.m)

1 function normalized_q = myQuatNormalize(q)

2 normalized_q = q/(sqrt(q(1)ˆ2+q(2)ˆ2+q(3)ˆ2+q(4)ˆ2));

3 end

Listing A.6: Function to Conjugate Quaternion (myQuatConj.m)

1 function q_star = myQuatConj(q)

2 q_star = [-q(1),-q(2),-q(3),q(4)];

3 end

138

Appendix B

The Health Sciences Institutional Review Board (IRB) of Florida International

University Protocol Approval

139

Office of Research Integrity
Research Compliance, MARC 414

MEMORANDUM

To: Dr. Armando Barreto

CC: Nonnarit O-larnnithipong

From: Maria Melendez-Vargas, MIBA, IRB Coordinator

Date: April 23, 2018

Protocol Title: “Hand Motion Tracking using Inertial Measurement Unit and Infrared

Cameras”

The Health Sciences Institutional Review Board of Florida International University has re-approved
your study for the use of human subjects via the Expedited Review process. Your study was found
to be in compliance with this institution’s Federal Wide Assurance (00000060).

IRB Protocol Approval #: IRB-16-0188-CR02 IRB Approval Date: 04/18/18
TOPAZ Reference #: 104800 IRB Expiration Date: 05/10/19

As a requirement of IRB Approval you are required to:

1) Submit an IRB Amendment Form for all proposed additions or changes in the procedures

involving human subjects. All additions and changes must be reviewed and approved by the IRB
prior to implementation.

2) Promptly submit an IRB Event Report Form for every serious or unusual or unanticipated
adverse event, problems with the rights or welfare of the human subjects, and/or deviations from
the approved protocol.

3) Utilize copies of the date stamped consent document(s) for obtaining consent from subjects
(unless waived by the IRB). Signed consent documents must be retained for at least three years
after the completion of the study.

4) Receive annual review and re-approval of your study prior to your IRB expiration date.
Submit the IRB Renewal Form at least 30 days in advance of the study’s expiration date.

5) Submit an IRB Project Completion Report Form when the study is finished or discontinued.

HIPAA Privacy Rule: N/A

Special Conditions: N/A

For further information, you may visit the IRB website at http://research.fiu.edu/irb.

MMV/em

140

Appendix C

Adult Consent To Participate In a Research Study

141

FIU IRB Approval: 04/18/2018
FIU IRB Expiration: 05/10/2019
FIU IRB Number: IRB-16-0188

Page 1 of 2

ADULT CONSENT TO PARTICIPATE IN A RESEARCH STUDY
Hand Motion Tracking in 3D Space Using Inertial Measurement Unit and Infrared Cameras

PURPOSE OF THE STUDY
You are being asked to be in a research study. The purpose of this study is to develop a system
capable of determining the movement of the human hand in real-time by combining two different
sources of information: orientation tracking using Inertial Measurement Units (IMUs) and position
tracking using infrared cameras.

NUMBER OF STUDY PARTICIPANTS
If you decide to be in this study, you will be one of 60 people in this research study.

DURATION OF THE STUDY
Your participation will require 60 minutes of time.

PROCEDURES
If you agree to be in the study, we will ask you to do the following things:
1. You will be asked to sit down in front of a desktop monitor and wear a glove on your left hand.

The glove used in this experiment has the inertial measurement units attached on it. It has a light
weight and it is as same as a regular fabric-material work glove used in household

2. Then, you will be asked to perform a sequence of simple hand movement tasks by rotating and/or
translating your hand. The hand movement will be numerically recorded and visually display on
the computer screen while you are performing the task.

3. You will be asked to repeat performing a sequence of simple hand movement tasks again for
different signal processing algorithm.

4. You will take off the glove after finishing the experiment.
5. You will be asked to fill out the questionnaire regarding the experience of using hand motion

tracking system.

RISKS AND/OR DISCOMFORTS
The minimal-risk is no different than working with a computer at work or home and the data and the
experiment uses non-invasive sensors for data collecting process.

BENEFITS
There is no direct benefit to the subject, other than contributing the knowledge of human-computer
interaction to the development of more natural user interface.

ALTERNATIVES
There are no known alternatives available to you other than not taking part in this study. However,
any significant new findings developed during the course of the research which may relate to your
willingness to continue participation will be provided to you.

142

FIU IRB Approval: 04/18/2018
FIU IRB Expiration: 05/10/2019
FIU IRB Number: IRB-16-0188

Page 2 of 2

CONFIDENTIALITY
The records of this study will be kept private and will be protected to the fullest extent provided by
law. In any sort of report we might publish, we will not include any information that will make it
possible to identify a subject. Research records will be stored securely and only the researcher team
will have access to the records. However, your records may be reviewed for audit purposes by
authorized University or other agents who will be bound by the same provisions of confidentiality.

COMPENSATION & COSTS
You will not be provided any compensation for your participation.
You will not be responsible for any costs to participate in this study.

RIGHT TO DECLINE OR WITHDRAW
Your participation in this study is voluntary. You are free to participate in the study or withdraw
your consent at any time during the study. Your withdrawal or lack of participation will not affect
any benefits to which you are otherwise entitled. The investigator reserves the right to remove you
without your consent at such time that they feel it is in the best interest.

RESEARCHER CONTACT INFORMATION
If you have any questions about the purpose, procedures, or any other issues relating to this research
study you may contact Nonnarit O-larnnithipong at EC 3970, Tel. (305) 348-6072, Email Address:
nolar002@fiu.edu

IRB CONTACT INFORMATION
If you would like to talk with someone about your rights of being a subject in this research study or
about ethical issues with this research study, you may contact the FIU Office of Research Integrity by
phone at 305-348-2494 or by email at ori@fiu.edu.

PARTICIPANT AGREEMENT
I have read the information in this consent form and agree to participate in this study. I have had a
chance to ask any questions I have about this study, and they have been answered for me. I
understand that I will be given a copy of this form for my records.

________________________________ __________________
Signature of Participant Date

Printed Name of Participant

________________________________ __________________
Signature of Person Obtaining Consent Date

143

VITA

NONNARIT O-LARNNITHIPONG

1990 Born, Chonburi, Thailand

2008 - 2011 B.Eng., Mechatronics Engineering
Assumption University
Samut Prakan, Thailand

2012 - 2013 Assistant Lecturer
Assumption University
Samut Prakan, Thailand

2013 - 2018 Ph.D., Electrical Engineering
Florida International University
Miami, Florida

Graduate Teaching Assistant
Florida International University
Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Abyarjoo, F., O-larnnithipong, N., Tangnimitchok, S., Ortega, F., Barreto A. (2015).
PostureMonitor: Real-Time IMU Wearable Technology to Foster Poise and Health.
Design, User Experience, and Usability: Interactive Experience Design. Lecture
Notes in Computer Science book series. Vol. 9188. pp. 543-552. Aaron Marcus.
Springer International Publishing Switzerland.

O-larnnithipong, N., Barreto, A., Ratchatanantakit, N., Tangnimitchok, S., Ortega,
F. R. (2018). Real-Time Implementation of Orientation Correction Algorithm for
3D Hand Motion Tracking Interface. Universal Access in Human-Computer Inter-
action. Methods, Technologies, and Users. Lecture Notes in Computer Science book
series. Vol. 10907. pp. 228-242. Springer International Publishing Switzerland.

O-larnnithipong, N., Barreto, A., Tangnimitchok, S., Ratchatanantakit, N. (2018).
Orientation Correction for a 3D Hand Motion Tracking Interface Using Inertial
Measurement Units. Human-Computer Interaction. Interaction Technologies. Lec-
ture Notes in Computer Science book series. Vol. 10903. pp. 321-333. Springer
International Publishing Switzerland.

144

O-larnnithipong, N., Barreto, A. (2016). Gyroscope Drift Correction Algorithm for
Inertial Measurement Unit Used in Hand Motion Tracking. Sensors, 2016 IEEE.

O-larnnithipong, N., Tangnimitchok, S., Barreto A. (2016). Gyroscope Drift Cor-
rection Algorithm for Inertial Measurement Unit Applications in Robotics. The 29th
Florida Conference on Recent Advances in Robotics and Robot Showcase, May 12-
13, 2016, Miami, FL.

O-larnnithipong, Nonnarit. Simple Hands-on Project with Unity3D and Oculus
Rift. Interaction Design for 3D User Interfaces: The World of Modern Input De-
vices for Research, Applications, and Game Development. pp. 483-509. Francisco
R. Ortega, Fatemeh Abyarjoo, Armando Barreto, Naphtali Rishe, Malek Adjouadi.
CRC Press, 2015.

O-larnnithipong, N., Barreto, A., Abyarjoo F. (2014). Impact of Binaural 3D Sound
on Navigation Within a Virtual Environment. Conferences on Computer, Informa-
tion, Systems Sciences, and Engineering.

Ortega, F., Barreto A., Rishe N., O-larnnithipong, N., Adjouadi M., Abyarjoo,
F. (2015). GyroTouch: Wrist Gyroscope with a Multi-Touch Display. Human-
Computer Interaction: Interaction Technologies. Lecture Notes in Computer Sci-
ence book series. Vol. 9170. pp. 262-270. Aaron Marcus. Springer International
Publishing Switzerland.

Tangnimitchok, S., O-larnnithipong, N., Ratchatanantakit, N., Barreto, A., Ortega,
F. R., Rishe, N. D. (2018). A System for Non-intrusive A↵ective Assessment in the
Circumplex Model from Pupil Diameter and Facial Expression Monitoring. Human-
Computer Interaction. Theories, Methods, and Human Issues. Lecture Notes in
Computer Science book series. Vol. 10901. pp. 465-477. Springer International
Publishing Switzerland.

Tangnimitchok, S., O-larnnithipong, N., Barreto, A., Ortega, F. R., Rishe, N. D.
(2016). Finding an E�cient Threshold for Fixation Detection in Eye Gaze Track-
ing. Human-Computer Interaction. Interaction Platforms and Techniques. Lecture
Notes in Computer Science book series. Vol. 9732. pp. 93-103. Masaaki Kurosu.
Springer International Publishing Switzerland.

145

	Hand Motion Tracking System using Inertial Measurement Units and Infrared Cameras
	Recommended Citation

	Hand Motion Tracking System Using Inertial Measurement Units and Infrared Cameras

