862 research outputs found

    Dance-the-music : an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    Get PDF
    In this article, a computational platform is presented, entitled “Dance-the-Music”, that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers’ models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method can determine the quality of a student’s performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures

    Models and methods for biometric motion identification Bartosz

    Get PDF
    Human motion is a complex signal with many different properties depending on various factors: age, gender, physical condition, emotions etc. Nevertheless there is a hypothesis which claims that human motion can be a source for biometric analysis and person identification. In the paper some methods to analyze and compare different motions are presented. Methods are examined for usefulness in motion identification. We distinguish time-series and frequency analysis for rotational signals describing mainly the motion of legs. The results of experiments are presented taking into consideration different motion representations

    A methodology for the performance evaluation of inertial measurement units

    Get PDF
    This paper presents a methodology for a reliable comparison among Inertial Measurement Units or attitude estimation devices in a Vicon environment. The misalignment among the reference systems and the lack of synchronization among the devices are the main problems for the correct performance evaluation using Vicon as reference measurement system. We propose a genetic algorithm coupled with Dynamic Time Warping (DTW) to solve these issues. To validate the efficacy of the methodology, a performance comparison is implemented between the WB-3 ultra-miniaturized Inertial Measurement Unit (IMU), developed by our group, with the commercial IMU InertiaCube3™ by InterSense
    corecore