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Abstract

With the increment of motion detection and tracking devices used in the
industry, the abundance of data that these devices create is unprecedented.
Using the data provided by these devices can provide a deeper look inside
the processes of manual work related tasks. Specifically, motion data, that
is information about the location of a person in time. In this work, we use
this data in the context of process mining, specifically to detect and improve
the manual processes for work practices. In these manual processes, workers
execute a given task or activity that are part of a broader case execution.
This work tries to join process mining and sensor data to take a deeper look
at what is happening within a task, apply process mining techniques to it
and improve manual work processes using the motion data. To do so, we
use Dynamic Time Warping on the motion data on an activity level and
spatio-temporal clustering on a case level. This provides us with granularity
and can be used to compare cases individually. To validate this algorithm,
two datasets are used for evaluation. The first coming from a real life sce-
nario from the company KIT-AR using AR glasses to help in the execution of
manual processes of companies. We also make use of the Karate dataset com-
posed by a set of Karate athletes of different skills executing karate moves.
The athletes have different age, height and skill level. Our approach success-
fully clusters the data based on the motion and the other metrics such as
time, using agglomerative clustering with precomputed pairwise distances.
Silhouette method is used for choosing the weights and the number of clus-
ters. Our implementation was efficient in finding anomalies in the execution
of the tasks as well as in detecting different work practices and identified
problems in the data collection. Finally, when we compare the process graph
of each cluster, we see different ways in the working practice and the activi-
ties, finding anomalies in the data as well. This approach offers a first look
in using 3D motion data to identify work practices, previous literature in the
field either did not use motion data or used it for activity recognition.
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Chapter 1

Introduction

In recent years, an increasing number of wearables, in particular Augmented
Reality glasses (AR glasses), are being widely used in industrial setting to aid
workers. One of the uses for this technology is to help workers in their manual
work with instructions, indications and by showing them virtual objects.[1]
These wearables produce an unprecedented amount of data, coming from
different kinds of sensors, in particular of position tracking. When exploiting
this data, we can extract the location and the trajectory of users wearing
them, and it allows us to compare these trajectories across multiple users
and across different executions of the same task in different time. Giving us
a detailed look at the execution of tasks, information like duration of the task
and movement being done during this execution. Particularly interesting is
to compare them with each other to find differences in the process itself. The
advantage of using 3D motion data is that you can represent motion using
points in space and only preserve the movement, without having to record
the entire video of the activity. This data has been very useful and has
application in various fields, ranging from computer vision to process film-
making or video games, healthcare, social sciences and in industry which is
the fields we focus on [2] [3].

Specifically 3D motion data coming from AR devices in factory environ-
ment, where these repetitive task are more likely to appear and be labelled,
and the task can happen again very similarly. The research question that
this work tries to solve is how can we leverage 3D motion into identifying
different work practices and view the data with a process lens.

The work is divided into two steps, the first focusing on the tasks. A
task is a basic activity being executed by the actor or resource, an example
of tasks in the context of an industrial setting can be: open lid, screw panel,
execute diagnostic and many more. The goal is to compare task executions
and efficiencies with all the other tasks. This is done using Dynamic Time



Warping, a method for comparing time series that can adapted for motion
trajectories and align them even if the two trajectories have different lengths
and speeds. This is especially a problem when considering human motion
data that can vary a lot from individual to individual. This method is used to
find the distance between those two series [4]. To validate the approach, we
use both the KIT-AR dataset, introduced in section 3.2, coming from real-
life work environment and synthetic data from Karate techniques dataset [5].
The reason we make use of a second dataset to check the validity is because
we do not have a ground truth in the case of the company data, therefore it
is hard to determine if the comparison is correct or not.

The second part will focus on the general case execution. A case is a
sequence of ordered events or activities. The order of activities across cases
will tell us how different is each case from the others.

In this part, we cluster them based on similarity parameters, one of which
is the motion similarity computed in the first part. We make use of other
features such as execution time and process information. The goal of this
phase is to take into account different metrics to calculate the similarity
matrix and ultimately identify different work practices. The clustering uses
different attributes that depend on the context and the industry. We use a
modified formula from [6] that, instead of using the Euclidean distance, uses
the Dynamic Time Warping and other distance measures. After calculating
the pairwise distances between all the cases, we can assign weights for each
metric and find the number of clusters. To determine these values, we use
the Silhouette method [7] with different values for each parameter, and we
choose the parameters that have the highest silhouette score, meaning that
the clustering is more successful.

1.1 Context and Topic

In traditional Process Mining, it is common to look into the process as a
whole, meaning that the only available information is about the activities
within the case. The basic component to do any process mining related
analysis relies on event logs. These are a series of tasks executions that are
part of a case. Each task (or event) refers to a case execution. Usually each
event in an event log is characterized by an activity name, timestamp, the
resource carrying the task, whether it’s a human or a machine, but there is
no further information on how the task is executed. Being able to understand
how the task is executed could provide us with greater insight on the work
practices, the efficiency and the bottlenecks within a task execution that can
arise. Providing us with unprecedented granularity over the process as a



whole.

The goal of this thesis is to address the limitation of traditional process
mining information and make use of the data coming from sensors and devices
that can be very useful, specifically we focus on the motion data coming from
Microsoft HoloLens *.

Lihttps: //www.microsoft.com/en-us/hololens /hardware;,
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(a) Traditional process mining

A:
Date, Sensor Data,
hand position

A:
Date, Sensor Data,

(b) process mining augmented with sensor
data

Figure 1.1: How our approach would give us more detail inside the process
visualized using Directly Follows Graph formalism

The image 1.1 shows a very simplified logic on how the approach needed
is helpful for gaining a better understanding of the process, mainly with
motion data. In traditional process mining the information available outside
the task, case and resource is limited. However, being able to ”"look into” the
execution of the activity can provide answers to questions about the task.
Before this data was available, we were only able to answer which activity
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being executed, the date and in some cases, the resource executing the task.
Now in addition to all the information we had before we can also find out the
way the task is being executed to the point of knowing the exact movement
of the actor for the whole duration of the task. Having this much data over
the process offers a lot of potential in enriching the process information and
the ability to find problems and optimize the tasks [8].

1.2 State of the Art

As we mentioned before and as far as we know, there are no methods currently
that use motion data and integrate it with process mining. However, in
[9] the authors proposed a method to use sensor data to improve on the
product design process by transforming the sensor data into event logs. The
approach used there was to segment a continuous stream of data coming
from the sensors and use it to create the event logs to understand how the
product was being used and how they can improve on the product design.
The main difference between the approach we are using is that we already
have a clear separation of tasks, and we use the sensor data to look into the
event execution through motion data coming from the HoloLens sensors.

In the field of manual assembly and process mining, in [8] the authors
proposed a tool that uses sensors and images from a camera and uses the
data collected to train an Al algorithm to automatically detect movements
like picking and placing an object. In comparison to our approach, this is
only validated on a set-up environment and not in real-life scenario. Another
difference is that they use their approach for activity recognition and do not
compare them to each other and detect different work practices.

There is therefore the need to use motion data to augment and use with
process mining to allow for more fine-grained analysis, the main focus is to
compare different 3D motion data with each other and ultimately being able
to identify different work practices within the process logs.

A complete overview of the state-of-art and related work is provided in
section 2.2.

1.3 Research Question

Based on the state of the art and current technologies, our approach will focus
on how to compare different executions of a certain task, by only having the
motion data information from the sensors. As mentioned before, we will be
using Microsoft HoloLens 2 and this headset provides us with point location



across time for each joint of the hands (when visible by the RGB-D camera)
and for the headset itself. In Figure 1.2 we can see where the depth sensor
is located, this is important to understand that the hand’s position will only
be visible when the hands are in sight. This particular model is used in the
context of KIT-AR, a company that provides AR solutions in industry. The
data collected from one of their projects is the main dataset that we focus
on to answer our research question.

depth camera

HoloLens image sensors
short and long-throw IR illuminators

4 gray-scale cameras

L———— Color video camera

Figure 1.2: Microsoft HoloLens 2 - Overview of sensor and components (Im-
age from wevolver.com, 2021)

For this given dataset coming from a real life scenario, we will use the
motion data and other information to detect different work practices. Since
this dataset won’t have a ground truth, it won’t be possible to evaluate the
results. That is why in addition to the KIT-AR dataset we make use of a
Karate dataset, that has some more information that we can use to evaluate
the success of our approach, at least in the first phase. The research problem
will be divided into two sub problems:

The first one being how to compare two different 3D human motion data,
or trajectories. This problem requires an approach able to find similarities of
work done by different people, at different speeds and with different heights.
Another requirement for this first phase is that the algorithm needs to work
with different lengths of sequences, since it is coming from real-life data, it is



rarely the case that two sequences have the same lengths. Additionally, we
need other metrics to assess difference between cases.

The second problem is, once we have the difference in human motion
data and eventually other metrics, to cluster and retrieve work practices. By
work practices, we mean different ways of executing a certain task or a set
of tasks, specifically from a human motion point of view, that we will define
as a case. For example, for executing the task ”LiftCovers” found in the
KIT-AR dataset there might be different paths takes to do the same thing,
as shown in figure 1.3. Some are very similar to each other, like b and d,
and some are very different. Proving that one task can have different ways
of being executed.

(a) case 35 (b) case 37

(c) case 40 (d) case 57

Figure 1.3: Different movements to execute task LiftCovers - data extracted
from KIT-AR system and visualized using Mokka tool
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1.4 Method or Approach

In this section, we introduce the method used and the approach taken to
tackle the research question.

For the first part, we focus on exploring the dataset and understanding
it, plotting it using tools like Plotly [10] on a Jupyter Notebook running
on a remote machine where the dataset is stored. For this part, we use, in
addition to the KIT-AR data, the karate dataset. In order to find different
work executions inside the dataset, we need to have first a way of comparing
two instances of a work execution, that we call task/activity. This activity
or task is stored in the dataset and provides us with detailed position of each
of the joint and the headset position. An overview of some type of data that
is present in the dataset is shown in Figure 1.4.

— Raw Data

Time Information

Process info

Date
Case Identifier

Timestamp Relative

Task

Task Sequence Spatial Information

X,Y,Z coordinates

Joint information

Figure 1.4: Overview of the data types in KIT-AR dataset

During the exploratory phase, we convert the data into C3D format. This
format is widely used as the standard format to represent bio-mechanical
motion data [11]. This is particularly useful when used in combination with
Mokka tool to visualize this type of data, since it shows motion and provides
a better understanding compared to plotting in a 3D plot [12]. Figure 1.3
shows an example of the visualization of the joints in a temporal manner. In
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Mokka, this is done using the concept of frames, where each frame represents
a position in space of the given joints at a specific time. Before being able
to visualize the joints and the executions, we convert the data points into
joints location using the format c3d. The next step is to give it a human-like
visualization. The headset location has the bigger spherical node of a radius
30 times the size of the fingers. This is done to reflect the proportions of the
average human body. Furthermore, we assign different colours to the left and
right hands to make it easier to identify in a 3D environment. In order to
compare and analyse these motion trajectories made by these points, we need
a way of comparing 3D trajectories. To do so, we make use of Dynamic Time
Warping, an algorithm that compares two sequences of points to find the best
alignment and computes a distance between the two. This will be one of the
metrics we use for the algorithm and the final comparison. The Dynamic
Time Warping or DTW tries to find the best alignment regardless of the
speed of the task execution, or physical features of the person executing the
task. In addition to the DTW we will make use of another metric to compare
two execution, one that will make use of the temporal dimension of the data,
that will be to compute the temporal difference based on timestamps and
the date, both present in the data as shown in Figure 1.4. Since it is hard to
evaluate the algorithm on the Dataset of KIT-AR, to check if our algorithm is
working we make use of the karate dataset [5] where we have techniques and
motion that repeat similarly across observation, and it comes with detailed
information on the athlete executing the tasks. The karate dataset was very
helpful in the first part, since it has motion data and knowledge about the
athletes. However, for the second part we needed a dataset with process
information and motion data, that we could not find.

Once we defined the first two metrics that refer to the spatial and tem-
poral dimension we need to take into account the process mining aspect of
things, that means accounting for difference in the order of tasks within a
case, whether a task is missing or if there is one task in excess. We make use
of Levenshtein distance on the tasks of a given case, and we compare them
with the task of the reference case at that given moment [13].

The second part is computing an overall distance using general distances
such as the spatial and temporal distance and also attribute distances that
can change based on the domain, such as the Levenshtein distance on the
traces between each case.

The next step is to compute the pairwise distances between all cases in
the dataset and identify the different work practices. The formula for this
has weight for each of the distances, and to find these weight we use the
Silhouette method that tells us what are the best values for the weights of
each metric and determines the best K value for clustering.

12



The final step is then to compute a Directly follows graph or DFG de-
scribing the process of cluster of cases, that are ultimately the work practices
i.e. how people execute these work, and we discuss the results.
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Picture 1.5 shows an overview of the various steps of our approach using
the raw data introduced in Figure 1.4.
In step 1, we define the three comparison metrics:

1. Spatial dimension
2. Temporal similarity
3. Process similarity

For the spatial dimension, we use Dynamic Time warping, this gives a sim-
ilarity measure regarding the movement and the trajectory created by the
motion in time. This outputs a distance that tells us how much the first tra-
jectory differs from the second, the closer the trajectory the smaller the DTW
distance is. This is done for each task within the case, and then aggregated
to produce the difference between two cases.

For the temporal dimension, we use a simple time difference approach.
For each case in the dataset we calculate the time required to execute each
task by using the value of the timestamp and the date. This is then com-
pared with the execution time of the other case we are comparing to and the
difference is the result of this step.

Finally, for the process similarity we use Levenshtein distance, a measure
of how the tasks of each case we are comparing differ with each other. This
accounts for how different case have either a different order or are missing
some tasks.

The outputs of this step becomes the input for step 2a. In this step, we
compare the cases, joining all the similarity measure into one value. This
value indicates the similarity on all three metrics of the two given cases.

However, before having the final similarity measure in step 2b we com-
pute the best values for the weights for each of the three metrics in step 1,
and we compute the best value for the number of clusters.

The output of step 2 as a whole is the similarity measure between the
cases with the optimal values for the weights and the number of clusters.
When applied to the whole dataset with all the cases, we have a similarity
matrix.

1.5 Findings

In this section, we introduce the main results of the approach and discuss
what they mean briefly.
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Results

Based on the dataset we have, and after applying the steps described above
we come up with clusters of work executions, however this was hard to evalu-
ate since in the data itself we do not have any ground truth. That is why we
contacted the domain expert working inside the company to assess discuss
with him the finding.

The algorithm identified 3 main clusters of execution, with the weights
given to each metric. The result was that the Levenshtein distance has the
most weight among the three metrics.

Interpretation

The three clusters identified by the algorithm were largely due to the Leven-
shtein distance, since it was given the highest weight among the distances.
This explains why the 3 clusters differ in the process execution or in the
traces, since every case in one of the clusters has a different number of tasks,
or missing tasks, compared to another cluster.

Some key findings are that the algorithm identified two clusters where the
process differed in one specific task: PhotoCapture, when visualizing these
tasks using Mokka we notice that the location of the headset, provided by
the sensor, was not present in more than 91% of the cases, this contributed to
create two separate clusters of executions. On the other hand, when checking
the other cluster, all the activities in that cluster had correct reading of the
HoloLens Headset location sensor for that specific task. In addition, the
algorithm also successfully identified an outlier in one of the three clusters
where an activity used in case of error was heavily present in that case.

The rest of this thesis is organized as follows: In section 2.2 we introduce
the main concepts and definitions used throughout this thesis and the related
work in the fields of search in motion data and the use of sensor data in
process mining. In section 3 we introduce the problem more in depth with
focus on the company dataset and the synthetic dataset. In section 4 we
introduce DTW algorithm and some basic usage, before applying it to the
real data, and in section 5.2 we use this metric and introduce the other
metrics, we present the results in section 6.4 before evaluating it in section
6.5 using silhouette method. In the same section we discuss the result and
show the DFG of the activities, finally we conclude with some reflections on
the work in section 7.
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Chapter 2

Background

In this section, we introduce the terms that will be useful and that require a
definition to better follow the rest of the thesis, in the second part we review
the related work.

2.1 Preliminaries

Definitions

Event/activity /task: Refers to an activity that is executed. In the
context of industry, for example, the events or activities can be steps
in the production line. We use task/event/activity as synonyms in the
rest of the thesis.

Event Log: A sequence of ordered events, belonging to the same case
execution.

Joint: It is the smallest point that is detected with the camera motion,
a set of joints form a body part, for example Hand, or finger and are
set in a hierarchical way: Index tip < Index < Left-hand

Trajectory/motion data: A trajectory is defined as a set of tempo-
rally ordered points in 3-dimentional space R3. Given a trajectory t
and a time i, the trajectory t(i) = (z,y,z) describes the position of the
point at time i for the duration of the task.

Case: Is a sequence of tasks or activities, identified with a unique id.

AR glasses: Augmented Reality glasses like the Microsoft HoloLens.
These devices are used to visualize virtual objects and integrate them
with the physical environment.
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2.2 Related Work

We begin by describing the three relevant lines of research correlated with
our thesis:

1. Use of motion data in process mining
2. Similarity search in motion data
3. Grouping and clustering in spatial and temporal dimensions

Use of sensor data in process mining. We analyse the different uses of
sensor data in the field of process mining. As mentioned before, we did not
find a lot of literature studying the use of motion data, but rather a lot
of the focus is on mapping sensor measurement to human. In that field,
the first paper we analyse the work by [9]. The authors here use sensor
data coming from a smart bottle and used the data to create event logs.
The smart bottle had some temperature sensors and accelerometer. The
approach used was to segment a continuous stream of data coming from the
sensors using segmentation of the sensor data, then uses feature selection to
characterize segments. Once they have the segments, they can interpret the
result with the labelled behaviour to finally create an instance process. The
main differences with this approach compared to the once we develop is that;
1) they make use of sensor data and not motion data and 2) The goal is to
identify activities within the continuous stream of data, whereas in our case
the data is already labelled for each activity as that is part of the software
provided by KIT-AR.

In [8] we find the most similar to this work where the authors implemented
a tool for automatically detecting actions in an assembly workflow. The
tool they created uses RGB-cameras and trains an Al model to recognize
the activities and label them, falling again into the field of study regarding
mapping of activities. In comparison to our approach, this is only validated
on a set-up environment and not in real-life scenario.

In another study, the same authors proposed in [14] the authors use a
camera to analyse the tasks and movement during a process. The main goal
of this study is to produce some data of assembly worker and analyse it
through process mining. Another difference is that they use their approach
to classify movements and not compare them to each other and detect dif-
ferent work practices. They set up a fixed camera on a workstation and the
worker performs some tasks [14], that are recorded by the RGB-D camera
on top. This however has many limitations: the work is limited to that area,
there is only a 2.5D view, and the setup is complicated and hard to replicate.
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In addition, the results were not satisfactory and required further work, since
the task had many degrees of freedom.

Similarity search in motion data As we need to compare motion data
and similarities between them. In [15] the authors wrote an overview of the
state-of-the-art methods for motion similarity in 3D human motion. They
divide their findings under three sections. 1) Similarity comparison, 2) action
recognition and 3) action detection & sub-sequence search operations as can
be seen in Figure 2.1.

Motion
similarity

28

ﬂ deep features +
Euclidean distance
,1.2,37,05,..> <..,16,29,06,..>

recognition

Action
detection &
Subsequence

X

Figure 2.1: Overview of the phases of 3D similarity in motion data. (P.
Zezula & J. Sedmidubsky, 2019, p. 1).
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Another approach can be found in [16] where the authors proposed an ap-
proach to solve the high variation problem and temporal issue is by extracting
motion motifs and introduces the concept of motion signatures. They achieve
so by using the joint rotation of the motion data and a combination of DTW
and a triplet loss convolutional network, achieving good results improving on
the results of [17] and [18]. However, this approach is considered weak when
considering data with high variability, and they have used only a subset of
the dataset, cherry-picking the motions with the best results for the given
metric. It uses dance movements and these were known and do not have a
lot of change over the dataset. In comparison, our approach is able to work
with any type of data in an almost unsupervised way, as long as the data is
already labelled.

Grouping and clustering in motion data regarding the clustering of ac-
tivities, there has not been many approaches using 3D motion data. In [19]
the authors proposed the use of unsupervised shapelets [20] to cluster time
series, while using DTW to align the time series. This approach however
only extracts a feature from the time series and is hard to generalize to 3
dimensions. This in turn was following the approach in [21] but, instead
of using statistical features, they use sub-sequences of the data as features.
One of the key points of u-shapelets is that it can ignore irrelevant data when
clustering, works perfectly with datasets with different object lengths, and
finally it can have a non-class label where all the non-clustered objects end
up, making sure only the similar objects get clustered together.

There has been many attempts at using clustering for geographical data
in data mining and machine learning, specifically for the field of geographic
knowledge discovery [22] [23].

In [6] the authors proposed an improved space-time clustering approach
that relies on agglomerative hierarchical clustering to identify grouping of
movement. In addition, they also present a formula that can be generalized
with generic distances and attributes. Compared to our approach this study
only uses some synthetic data and not on real life data, in addition the dis-
tance fiction implemented is simply Euclidean distance, whereas we defined
a DTW distance and made use of the ad-hoc distance measure.
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Chapter 3

Problem Exposition

The problem this thesis tries to solve is: given a work pattern or trajectory
to calculate the similarity between the tasks and, on a case level, to provide
the similarity across all cases. This can provide great insight on how each
of the subjects execute the tasks and how their work practices differ. The
ultimate goal is to be able to cluster activity executions into meaningful
clusters that reflect different work practices. After that, looking at it from a
process mining standpoint, having this information can help us improve the
process, understand why these different work execution, if any, appear in the
first place, and ultimately trying to solve them.

3.1 Context/Business Understanding

In workflows with manual tasks that require a human and machine interac-
tion, having control over the human behaviour and its interaction with the
system is key for engineers and managers to understand and improve on the
work station. This knowledge can be used to construct or improve an as-
sembly work station [8]. In our case for the company KIT-AR, it might be
useful to understand how to improve the interaction of the worker with the
environment and to make more efficient use of the HoloLens.

We therefore discuss the proposed approach in the context of a car man-
ufacturing process that uses AR glasses to guide the worker. The AR glasses
are connected to a system that records and stores all the executions of the
given tasks at a certain frequency. The tasks and the steps to follow are
shown to the worker via AR technology and can interact with it using their
hands, HoloLens can see and map the position of all the finger and hand
joints that are visible thanks to the depth camera mounted on the headset
(see Figure 1.2). The worker follows the instruction and executes the task
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prompted, and then moves forward or backward if there is any problem. The
intended workflow is linear and sequential, meaning that the worker should
follow the steps prompted on the virtual screen and go backwards only if
there is a problem or error.

Each worker has a set of tasks to execute and when that task is finished,
the worker ticks a box and performs the next task. A task can vary from
opening a container, to moving certain parts Figure 3.1 (a), to making sure
all the parts are inside a KIT of parts or making sure the piece is intact
Figure 3.1 (b) If there is any problem with any of the tasks, the user will be
able to flag it in the AR window.

Figure 3.1: Two examples of the KIT-AR workflow, using HoloLens. (images
from kit-ar.com, 2021)

3.2 Data Understanding

The data used is a modified and anonymized version of the produced data
from the worker, containing a list of event points for each of the hand joints
and one for the AR glasses that corresponds to the position of the headset,
usually on the head. The data points are represented using three-dimensional
Cartesian coordinates, where the origin represents the marker that is set by
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the worker during the AR setup of the environment and calibration on the
KIT itself.

Case | Task Sensor Timestamp | x y Z

0 BarcodeReadl | ARCamera | 0 -0.248 | 1.645 | -2.664
0 BarcodeReadl | ARCamera | 0.212 -0.245 | 1.643 | -2.664
0 BarcodeReadl | ARCamera | 0.447 -0.243 | 1.644 | -2.664
0 BarcodeReadl | ARCamera | 0.661 -0.243 | 1.644 | -2.664
0 BarcodeReadl | ARCamera | 0.879055 -0.243 | 1.648 | -2.659
0 BarcodeReadl | ARCamera | 1.095055 -0.235 | 1.65 | -2.625
0 BarcodeReadl | ARCamera | 1.329055 -0.182 | 1.639 | -2.595
0 BarcodeReadl | ARCamera | 1.546055 -0.07 | 1.633 | -2.586
0 BarcodeReadl | ARCamera | 1.778055 0.111 | 1.65 |-2.6

0 BarcodeReadl | ARCamera | 2.011055 0.248 | 1.687 | -2.606

Portion of the raw data from the KIT-AR System

Dataset creation:

Before utilizing the dataset, we need to perform a series of operation to
anonymize the data and make it easier and more scalable to read and perform
calculation of the data-points. The steps that we’ll use are adapted from the
work of Alan and Antonio [24] where they performed gesture recognition.

Normalization The first step in order to compare different execution of a
task in a three-dimensional setting is to normalize the data, and that is done
by finding the average point’s coordinate also called a centroid and offsetting
every other point by that value. This ensures that the trajectory does not
change, only the absolute location of the points will change. This step is
explained in detail in section 4.2. Data type conversion The second step
is to convert some data fields like the case identifier into a number instead
of an alphanumerical identifier, speeding up the calculations.

3.3 Detailed Research Questions

Based on the previous premises, the research problem is then divided in two:
The first is how to compare these motion trajectories, in three dimensions,
without caring about height of the user, scale and time of execution.

The second is to find a method to identify different clusters of execu-
tions of cases that would identify the different work practices recorder on the
device.
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3.4 Detailed Method

The method we will be using to compare the results will be by applying
process mining techniques such as the Interactive-data Aware Heuristic to
mine a model before performing the clustering. The tool we are using is
ProM. We create an event log from the raw data presented in section 3.2
in xes format [25]. Once we have the log, we mine the model visualized
as Directly-Follows graph with the most common traces to avoid spaghetti-
like model that would be hard to read and interpret the results later on.
The filtering we apply is based on frequency, meaning that for the graph we
consider the activities happening at least a certain amount of times, this is
done using the filter function in ProM.

ManifestExecTask417

ManifestExccTask206

ManifestExecTask204

ManifestExecTask416

Figure 3.2: Mined DFG from the data, without any clustering
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We use this model to compare it with the resulting model after applying
the clustering, having K new models, one for each of the clusters as an output
of the method introduced in section 5.2.

We also use Mokka tool [12] to visualize certain trajectories of the mo-
tion data converted into ¢3d format [11] of the various clusters and domain
knowledge from inside the company to assess the validity of our results. Some
examples of the visualization of the tasks in Mokka is shown in Figure 3.3.
Inside this tool we are able to assign different colours (Figure 3.3 a), different
sizes and visualize the segments between joints. This can help us visualize
better the head location, given by the location of the Headset and hands
location. Finally, it allows to visualize the trajectory (Figure 3.3 b and d) of
a certain joint.

25



(a) BarcodeRead

(b) Manifest201

(¢c) Close Covers

Figure 3.3: Different example of activity visualization using Mokka.
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Chapter 4

Comparing different trajectory

In order to compare two different executions of a certain task and in order
to do it in three dimensions, we make use of Dynamic Time warping [26]
that has been the de facto standard for time series analysis. This is very
useful for the scenario we have and specifically to compare executions from
different actors, with different heights, body form and different speed. An-
other relevant characteristic of Dynamic Time Warping is that it provides a
warping path, meaning that given two time series, the algorithm will align
them together and provide a path that minimizes the distance difference.
This concept is particularly useful in the case of subtask executions where
we want to see not only the distance between two given trajectories but also
how one deviates with another. The distance provided by the algorithm will
then be used in Chapter 5 together with other metrics to cluster activities.
This measure will represent the similarity in motion.

4.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a popular distance measure introduced
first by the authors of [4], initially for the purpose of speech text recognition,
but soon this method became widely used in many other fields [27] [28].

The algorithm uses two trajectories as input and matches the vertices
from one trajectory to the vertices of the other such that the summed distance
is minimized. This means that the algorithm is able to align two trajectories
to find the optimal match [29]. Since there are many paths between the
reference and the test trajectory, therefore the optimal warping path is the
one that minimizes the distance.
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dp = mmZd(mw(i)),ﬂ(w(i))) (4.1)

In the equation above w(i) represent a single warping path and d is a
distance function, typically Euclidean distance, used to compare the two
points.

For example, given two one-dimensional trajectories T; and T, defined
below:

Ti[n] =[0,0,1,4,3,1,0,1,2,2,1,0,0,0, 3]

4.2
T,[n] =[0,1,2,3,1,0,0,0,2,1,0,0, 1] (42)

Even though the two series different in length and in values, when we
apply the DTW algorithm we find the warping path between them and, is
then able to find the similarities between them, as shown in Figure 4.1.

The algorithm works in a simple way, instead of checking for distances
in the trajectory and select the warping path (or matching path) based on
the shortest distance of the current point, it computes a matrix of distances
based on current point to the neighbouring points, the proceeds to compute
the best path, that goes through the shortest values at any given point, until
reaching the end, where the computed distance is also the distance between
the two trajectories.

The images show two trajectories that are being compared to each other.
When a point in the same position does not match the other trajectory, the
neighbouring points are checked and the shortest distance is take, based on
Euclidean distance.

4.2 Data Preprocessing

Before utilizing the dataset, we need to perform a series of operation to
anonymize the data and make it easier and more scalable to read and perform
calculation of the data-points. Including the normalization and converting
the case ID into a sequential number instead of the alphanumerical identifier,
this way we the operation can be speeded up.

The steps that we’ll use are adapted from the work in [24] where they
performed gesture recognition.

Normalization The first step in order to compare different execution of
a task in a three-dimensional setting is to normalize the data, and that is
done by finding the average point’s coordinate, also called a centroid, and
offsetting every other point by that value. This ensures that the trajectory
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Figure 4.1: Visualization of alignment using DTW on the two example series

does not change, only the absolute location of the points will change as shown

in Formula 4.3. "
/ = 3 Zizl(xivyivzi)

n

(4.3)

Once we have the centroid, we subtract from each point of the trajectory
the value of centroid on each of the axis (4.4).

(@i, Yi, Zi)/ = (2, — %,y — U, 2 — 2) (4.4)

This helps the DTW algorithm to compare two trajectories despite being
different in location and scale. A result of the normalization is shown in
Figure 4.2. It is possible to see how normalizing our trajectories can be
helpful, since for the same activity the location of the joints is not always
the same. For example, in Figure 4.2 a and ¢ we see that the position of the
headset and the location of the hand are very far from the origin, but after
applying the normalization (Figure 4.2 b and d) we can see that they come
closer to the origin.
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(a) Case 10 before normalization

(b) Case 10 after normalization

(d) Case 15 after normalization

Figure 4.2: Effects of applying the normalization FetchManifest task in
KIT-AR dataset, visualized using Mokka
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4.3 Multidimensional DT'W

In order to use the DTW for our 3 dimensional data, we need to use multi-
dimensional Dynamic Time Warping. Using this algorithm, we can compare
two given trajectories on the three dimensions and then merging the result.
However, the way it is done can change the result of the calculation by a
lot, mismatching the class. The reason this happens is that the two ways to
calculate the multidimensional DTW use different approaches to merge the
three dimensions. As a consequence, choosing a different approach can give
a completely different result.

Therefore, we rely on the analysis and discussion in [26] about the impor-
tance of choosing the right method to apply. There are two main ways of to
generalize the classic DTW approach into a multidimensional case: Figure
4.3 shows a simple example demonstrating the difference in the result.

4.3.1 DTW-I

DTW-I is the distance of each dimension measured independently under
DTW added to each other. Meaning that the distance of the three-dimensional
series would be the sum of the DTW on series of x, y and z.

This means that each dimension is considered separately and independent
of the others.

The calculation of the DTW-I is shown in the equation below, where i is
the dimension considered.

N
DTWI(Ty,Tp) = »  DTW(T},,T5,) (4.5)

i=1

4.3.2 DTW-D

The second way to calculate Multidimensional-DTW is by using dependent
DTW or DTW-D. Instead of considering each dimension separately, we con-
sider the dimensions in an n-dimentional space and calculating the distance
between the two points.

The equation for the DTW-D becomes the following considering two
points instead of trajectories as a whole, redefining the distance function
d as the cumulative Squared Euclidean distance, where n is the number of
points being considered.

N

DTWD(pl,m) = Z d(Pln - p2n)2 (4'6)

=1
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Figure 4.3: top left: Two multi-dimensional time series. a) The Dependent
DTW distance between them is 3.2. b The Independent DTW distance
between them is 2.4. ( Shokoohi- Yekta et. al., 2016,p. 3)
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(a) DTWp(Q.C) =DTW({Q,.Q,},{C..C,})=3.2

(b) DTW,(Q,C) =DTW(Q,,C,) + DTW(Q,.C,) = 2.4

4.3.3 Comparison and choice

After introducing the two different implementation of the algorithm, we now
compare the two for our specific case and decide which of the two methods
will fit our data and why.

Based on the implementation and the design, the question is ultimately,
”is our data on one dimension dependent on the other dimension?” since that
is the main difference of the two. DTW-I considers all dimensions separately,
whereas the DTW-D considers them in a dimensional setting.

In [30] the authors argue that since the data from their domain (satellite
image data) have dependent dimensions, it is wise to use DTW-D.

Following that argumentation and since the data that we are considering
is motion data, we assume that there is high correlation between the three
dimensions, and therefore we will use the DTW-D.

Although we decided to go with one method, both approaches were con-
sidered and implemented.

4.3.4 Implementation

After choosing the approach, we integrate it in the algorithm implementation
from [31] library that comes with pre implemented functions for DTW and
multidimensional DTW.

The algorithm computes a distance matrix based on Formula 4.6 that
then can be displayed using a heat-map, and on each axis we visualize the 3
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trajectories, one for each dimension. In Figure 4.4 we can see the result of
this computation on two very similar activities from the Karate Dataset [5].

As can be seen from the optimal DTW path (in red), that is mostly
diagonal, meaning the two trajectories are very similar. In the dark blue
areas the value of the distance is lowest, therefore the path follows those
values as per design, whereas close to the top-right corner and top-left corner
the values of the distance is higher since we are comparing the beginning of
the trajectory with the rest of it.

o 200 400 600 800 1000 1200 1400 1600

500

1000

1500 4

Dist = 2123.3109

Figure 4.4: Two multi-dimensional time series of a technique execution from
Karate Dataset

At the end of this process we will have a DTW distance, that corresponds
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to the value of the last cell, this represents how much the path deviated and
the cost of such deviation based on the distance. The value of the distance will
be used later to compute the pairwise distance between all the trajectories.

Dist = 1.9396
Figure 4.5: Comparison of the task Close Covers in cases 120 and 1

In Figure 4.5 we can see the two trajectories composed of the three di-
mensions in blue, orange and green, respectively x y and z coordinates. In
the bottom right corner we can see the warping distance, that indicates how
much the two trajectories differ, the higher the distance the more different
they are, when applying twice the same trajectory we obtain zero as a result,
since two identical trajectories do not differ at all.

In Figure 4.5 and Figure 4.4 we can see the similarity matrix coded in
colours. The lighter the colour, the higher the distance between those two
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points. As we can see in the bottom left and top right corners the colour
is the lighter reaching a yellow colour at the extremes, this is because we
are comparing the beginning of one trajectory to all the trajectory and the
distance inevitably increases. On the other hand, if we keep following the
diagonal of the matrix we can see the comparison of the single points, if the
trajectories are identical then the best warping path (in red) should follow
exactly the diagonal, meaning that each point corresponds to an identical
point on the other edge. The closer to a diagonal the warping path, the more
similar the two trajectories are.

When comparing the two figures from the two datasets, it is easy to see
that one has far more data points and granularity than the other. This
because the tasks are short in the case of KIT-AR and only require little
movement in the majority of the cases.
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Chapter 5

Clustering of activities

Finding clusters is an important task in many spatial analyses tasks, in order
to explore the trajectory and to find insight on the spatial data. For the scope
of this thesis, we need to cluster activities and retrieve the different work
practices by leveraging the spatial data, temporal data and other attributes
that can be useful from a process mining perspective.

The requirement of such algorithm are that it needs to be:

Generalizable: the algorithm needs to be generalizable to any type of data
and any domain, as long as it has motion data in it and some process infor-
mation.
Flexible: It needs to allow for different weights to the different metrics based
on the task or question it aims to answer. For example, if the temporal met-
ric is more important to analyse, but we still want to take into account rest
we can give more weight to the temporal dimension and lower values to the
other metrics.

5.1 Spatio-temporal Clustering

Based on these requirements just defined, we make use of the approach de-
scribed by the authors of [6]. In this paper, they introduce an improved
spatio-temporal clustering algorithm that makes use of general and specific
distances and is purposefully generic to accommodate any domain. This is
done by using general distances and attributes that can be specific to the
domain.

The equation below is the adapted equation used for our specific case.

DTW _’i7 C, D [7,'71; LD _i7 2
D(c;,cj) = wy * DTW (2, 2,) + wy * Dilty 1) + ws * LDpipy) (5.1)
Sprw SDt SLp
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5.1.1 Implementation

Equation 5.1 is composed by a set of metrics and weights assigned to them.
After that, the result is standardized or scaled using the S term for each
metric. Once we have computed the similarity between two activities, we
can start clustering them to retrieve similarity in the execution of cases at a
macro-level, using notions calculated in the previous chapters.

After we define the trajectory/trajectories for each task, and we define
the sensibility for each task using the weight w0...w3. We can compare even
in real time the trajectory and output a similarity measure. This similarity
measure will characterize how similar the movements in the trajectories of
the case are, and how these two cases compare to each other from the other
metrics.

The equation 5.1 is composed by a series of general distance measures like
the DTW and Time difference, as well as more specific attribute distances
and Levenshtein Distance. These set of distances will be explained in detail
in the following sections.

The clustering algorithm and the DTW comparison have both been im-
plemented in a Notebook using Pyhton 3.6. For easier computation and
change, we save each of the calculation on disk, so that we do not have to
run it again. For the DTW part we make use of a set of publicly available
libraries such as dtaidistance [31] and Matlab plot Library. For the clus-
tering, we use Sklearn, with the metric="precomputed" argument in the
functions of the Silhouette and the Agglomerative clustering. The reason
for this that we already computed the distances between observations in a
similarity matrix w.

5.1.2 Dynamic Time Warping distance

The first distance measure that we defined as introduced in section 4.1 is
the DTW to compare the two tasks execution in a spatial manner, using
this distance we can track similar execution of a task or a set of tasks and
retrieve information that would never be possible with classic Process Mining
techniques.

5.1.3 Temporal distance

The second distance measure is a simple temporal comparison in the execu-
tion of a task. This is helpful to extract the temporal dimension since the
DTW aligns the tasks even if they happen at different speed, however our
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goal is to compare both and, based on the scenario, give each one a different
weight.

5.1.4 Levenshtein Distance

Finally, to introduce process mining measures, we use a modified version of
the Levenshtein distance [13]. This will help us compare the flow of two
cases, the order of the activities, if a task/activity is missing or if there is
more than one.

5.1.5 Quaternion DTW

The quaternion DTW is a special variant of the DTW that instead of using
Euclidean distance, it uses quaternions distance. This data is coming from
the AR glasses and tells us at any given time when the person is looking or
where the Glasses are directed at. For this implementation, [29] definition
was followed and implemented in Python [32].

This measure was added since it was interesting to plug another distance
measure into the DTW showcasing that it’s feasible to have multiple metrics
for any given domain. However, in the final clustering algorithm, it was not
used. This is because we deem it adds complexity to the algorithm, and for
this first iteration we keep it simple.

5.2 Clustering Values

After defining all the metrics we are using, we put them together using the
equation 5.1.

The result of this step will be a distance that takes into account all these
metrics and add them together. Resulting in a matrix of pairwise distances
as an output. An example of the result for DTW distance calculation is
shown below in Table 5.1. As we can see the values on the diagonal show a
value of 0, this is to be expected since the motion data distance is the same
and therefore DTW-D algorithm returns a value of zero.

Another important observation is that the DTW distance value between
cases 1 with j is equal to comparing cases j with i. In the implementation, we
check for the one with the longest sequence, and we use that as a reference.
This implementation decision allows us to run the script on half of the matrix
reducing drastically the execution time of the script.
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Figure 5.1: Quaternion Dynamic Time Warping (B. Jablonski, 2012, p. 5)

case Id | 1 2 3 4 5 6

1 0 228.71 | 854 | 7.50 | 258.6 | 76.5
2 228.71 | 0 26.13 | 15.55 | 269.3 | 96.35
3 8.54 26.13 |0 269 | 1.88 | 18.74
4 7.50 15.55 | 2.69 |0 3.01 | 1891
5 258.6 1269.3 | 188 [3.01 |0 74.87
6 76.5 96.35 | 18.74 | 18.91 | 74.87 | 0

Table 5.1: Portion of table for the DTW-D calculation
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Chapter 6

Evaluation

In this chapter, we evaluate our findings using the Silhouette method, which
is a common score when using DTW [33] [27] [28]. Following the introduction
to the silhouette method, we introduce the setup and the methods used for
this evaluation. Finally, in the discussion section we analyse the results of
the clustering and the working practices identified, for each of the clusters
we plot DFG and in what they differ with each other. We include interviews
from the domain expert about the results and the possible causes for such
clustering.

6.1 Silhouette method

After the distances are calculated we need to decide how to compute them
together and specifically, the goal is to decide the values of the weights w; and
the optimal value for k, the number of clusters. To do so, we make use of the
silhouette method, first introduced in [7]. This is a non-parametric measure
of cluster separation where for each case i, the silhouette index is defined as
s(i) = (b; — a;)/max(a;, b;), where a; is the average dissimilarity between ¢
and the other cases of the same cluster, and b; is the minimum dissimilarity
between 7 and all the cases of a different type. Based on the value of the
silhouette score, we can assess how well that k value fits the data, meaning
how well the clustering is, if the score is low it means that the clustering is
not very effective, if the score is high it means that the algorithm found good
clusters that are all far from each others.

We use the same approach by keeping the k value constant and changing
the values of the weights until the silhouette score stopped improving.

40



6.2 Objective

The objective of this approach is dual: The first is to decide on which value
to use for K that can better identify the clusters. By running the clustering
function multiple times with different k values and choose the one with the
best silhouette score.

The second is to decide on which values to use for weights for each of the
distances that make the silhouette score the highest, meaning that all the
cluster found are at the optimal distance.

6.3 Setup

The experiment runs as follows: after preprocessing the data we run the
pairwise comparison of all the tasks within the case, if a certain task is not
present we skip it. This will be accounted for by the Levenshtein distance.
After we calculate the DTW-D for all the cases, that in turn are composed
by the sum of the DTW of each task within the case.

After having all the matrix distance of the three metrics that we defined,
we can compute them together into a final matrix that is the weighted stan-
dardized sum of all the metrics. To determine the value of K and the weights,
we run the Agglomerative clustering into 4 for loops. Three for the weights
and one for the number of cluster. We compute the clusters and the silhou-
ette values inside the inner loop. After that, we store the values in a Pandas
data frame on disk, this way it is easy to replicate the experiment at any
stage without the need to run the algorithm from beginning, this also helps
for the DTW since it requires a lot of time to compute all the distances for
the dataset and therefore having the results saved is advantageous.

6.4 Results

One of the best values for the weights are: w, = 3,w; = 6,wy = 1 and for
k = 3. After applying the values to the spatio-temporal formula, we obtain
the silhouette plot in Figure 6.1.

After obtaining a K value and the weights with high silhouette values, we
proceeded to check and see the results of the agglomerative clustering.

In Figure 6.1 we can see clearly the clusters. One of the clusters is not
visible since it is only one case.

Regarding the time difference, we present below the average time of ex-
ecution of each cluster in Table 6.1. We use cluster 1 as a reference for the
time difference since it is the most behaviour, having the most cases. As we
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Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

The silhouette plot for the various clusters.

Cluster label

01 00 02 04 06 08 10
The silhouette coefficient values

Figure 6.1: Silhouette plot with k=3

Hierarchical Clustering Dendrogram

T T T I - T T A - I 2N I T R I . R R TR S N .
Number of points in node (or index of case if no parenthesis)

Figure 6.2: LinkageThree of the cases showing the 3 clusters. X-azis shows
the case Id or in parentheses the number of cases in that node
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Cluster Average time difference compared to cluster 1 (%)

Clusterl

Cluster?2 26% slower

Cluster3(case 92) | 68% slower

Table 6.1: Time difference in percentages compared to cluster 1

can see the time difference also reflects the clustering, in fact all the cluster
differ with each other, this is to be expected since one of the metrics used is
temporal difference.

6.5 Discussion

After clustering the cases, we analyse the results. In the case of our particular
configuration, we have mainly two clusters of executions. Cluster with the
normal path and a cluster with few cases. Finally, there is an outlier cluster
that has some tasks that makes it an outlier. This is case 92.

Once we retrieve case identifies belonging to the clusters, we filter the
data on ProM to mine three models, one for each of the clusters. The results
are shown below.

Cluster 1: The main behaviour

The first cluster of execution that the model identified is composed of the
majority of cases showing the "normal” behaviour of the model.

An image of the mined model is shown in Figure 6.3, as we can see the
behaviour of the model is mostly linear, this reflects our expectations of
the model. Where the majority of cases follow a straight path and a portion
deviates in specific points. In this case, we can see that the deviation happens
specifically on PhotoCapture tasks.
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BarcodeReadl

ShowManifest1 ManifestExecTask311

PutMarker

TrackLocationl

ManifestExecTask201 ManifestExecTask314

ManifestExecTask202

ManifestExecTask210

Figure 6.3: Mined DFG for the cluster 1. (The image has been cropped and
joined together for better visualization)

Cluster 2: Modified behaviour showing on Photo Cap-
tured task

This second cluster of work practice shows a slightly different behaviour
compared to the first, here we see Photo Capture task being more linear with
the rest compared to the first identified cluster.
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" This task refers to when workers are asked to take a picture of the kit/cart
to document what parts are present and which ones are missing or have prob-
lems.” This was the clarification of the domain expert about this specific
task.

In order to investigate this phenomenon, we visualized this as seen in
Figure 6.4 using the Mokka tool and by providing the case ID of the cases
in the cluster and PhotoCapture as task identifier. We found that in only 6
cases out of 67 there was presence of the ARCamera. This is the sensor that
tracks the position of the HoloLens itself. Meaning that in more than 91%
of the cases in the identified cluster were not tracking the headset. However,
the rest of the hand joint were still visible, indicating that there might have
been some errors in the reading.

Comparing this to the previous cluster where in all the cases for the task
PhotoCapture there was a reading on ARCamera, equivalent to 100% of
the cases.

After asking the domain expert in the company about this anomaly, this
was his response;

"This 1s a very interesting finding for our internal system diagnostics.
We are using the camera to take an image, but the camera is also our source
for the trajectory data. So, what may be is that when using the camera to
take the photo, the sensor does not provide the position and rotation data any
more.”

This explains why in most of these cases there was no reading for the
headset location, contributing to clustering them together.

Cluster 3: Anomaly case

The final cluster identified by the model After exporting the log to ProM [25]
we found that an activity: InjectedTrackingTask7635e11d-b866-4b14-
84a0-10bf3cb5adfca

When we run the trace of the case in ProM and plot it with Data-Aware
heuristic miner, we have the DFG in Figure 6.7. As we can see, this DFG
is different from the other clusters, and the linear structure seen in cluster 1
and 2 is no longer present.

Although it is only one case, we use the same method of plotting for easier
comparison with the other Directly Follows Graphs.

After asking the domain expert inside the company for more information
of what might be the causes of this behaviour and what exactly does this
task do. This was his response.
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(a) Case in the cluster where there was no reading of the Headset (head sensor
position still in the origin)

(b) Case in cluster where the headset joint was visible

Figure 6.4: Using Mokka tool to inspect the abnormal behaviour for Photo-
capture, where in the majority of cases the ARCamera was not read

"The task is triggered when the worker performs a so-called realignment
task. This is usually done when, for some reason, the AR instruction are not
well aligned any more with the real-life position that they should be on. By
activating this task, which you can think of as a work instruction independent
system task, the worker gets the opportunity to look at the QR code marker
again to improve the alignment. The reason that it has a strange name with
a Universally unique Identifier (UUID) is a purely technical one and has no
meaning.”

This task therefore indicates that there has been a problem and in this
specific case there has been so many, that is why the algorithm identified it
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ManifestExecTask210

Figure 6.5: Mined DFG for cluster 2. The image has been cropped and joined
together for better visualization

as an anomaly, because both from a process mining point of view and from
a trajectory point of view it did not fit to any of the other tasks.
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Figure 6.6: Anomalous case discovered from clustering

InjectedTrackingTask7635¢1 1d-b866-4b14-84a0-10bf3cSadfca

ManifestExecTask208

Manifes!

xecTask206

BarcodeReadl

FetchManifest]
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ShowManifest1

PutMarker

TrackLocation1

ManifestExecTask201

Figure 6.7: Anomalous case 92 DFG
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Chapter 7

Conclusion

In this thesis, we proposed a spatio-temporal clustering based on motion data
from sensors.

The work is divided into two phases. In the first phase, we compared
trajectories of execution using DTW and output a distance measure.

In the second phase we use the outputted distance and, together with
attributes, we compute a spatio-temporal distance function used to compute
the pairwise distance between each case, and ultimately we clustered the cases
using Agglomerative Clustering with the precomputed distance matrix.

For the evaluation and to decide on the weight we used the Silhouette
method, and based on the score we tweaked the parameters and the number
of clusters.

After applying this method to the KIT-AR dataset, we retrieved the
clusters that were used to identify work practices.

We identified a total of three clusters, two with work executions, one of
which with relatively fewer activities and one with the rest of the activities.

To explore the clusters, we mined the process model using ProM and
produced event logs from the dataset using PAPM for Python.

The main limitations of our approach are:

Validation:This is rather a weakness of the dataset used, since we did not
have any ground truth it was hard to test the validity of our approaches and
many times we either had to use a second dataset to validate or refer to the
domain expert to analyse the results.

Computational: Using the DTW is very handy for our approach, but comes
with limitations. One of which is the computational speed. For example, to
calculate the whole DTW matrix for all cases it required more than 47 hours
running non-stop. In the beginning of the ideation part the idea was to apply
the algorithm to every single available joint, instead we opted to use only the
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headset location sensor. Which brings us to the final limitation:

Use of only one joint: The idea of applying this algorithm to motion
data was to use many points and detect not only the location of the head-
set, but the movement of every single joint. Being able to identify the most
fine-grained motion of the hands and compare their execution. This how-
ever was not possible for two main reason, the first being the computational
limitation, having to perform the same calculation for all joints (up to 53,
26 for each hand plus one for the headset location). This would increase the
duration of the comparison up to 100 days of calculation. The second reason
is that the other joints are not always available, since they are only read and
recorded when the hands are visible, and dealing with such complexity is not
manageable.

The set of steps performed greatly at identifying work practices, in our
case 3 different ones. It is interesting to consider how the algorithm using 3
different metrics and taking into account all of them with different weights
can yield such a clustering that can be interpreted both from a standpoint of
motion data and similarity, in the case of trajectory comparison and from the
temporal aspect of it and a process mining point of view. Especially helping
the company to identify a problem in their data reading for PhotoCapture.
One final discussion point regarding the weights, since the Silhouette method
gave us as a result for better cluster with a very high weight for the Lev-
ensthein distance, meaning that it does not consider the other distances as
much. However, the argument here is that Levensthein distance needs to
be given more weight if we want an output that is relevant from a process
mining point of view. Having more or less tasks compared to another cases
need to penalize a lot more that just doing task in a slightly different time
or with a different motion.

Future work in these fields is needed in order to apply different metrics
of distance or use different joints in the equation, ensuring to capture not
only the motion of the head but also how the different joints motion compare
across different cases. For example, how different workers perform the task
of lifting the lid, analysing their hand motion. Perhaps using a hierarchical
weight for each joint section can provide us with more insight on which parts
of the body are more involved in a task execution.

For example, in the healthcare field hand and finger joints motion can be
given more weight than torso and legs, since the type of tasks performed is
mostly using hands and head motion. Following the eyes’ movement of an
athlete during an intensive training can tell us more about which location
the athlete focuses their attention on, this could be done by plugging the
already implemented Quaternion DTW and tracking the eyes movement on
a sphere instead of focusing on the movement.
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