6,897 research outputs found

    Successive Concave Sparsity Approximation for Compressed Sensing

    Full text link
    In this paper, based on a successively accuracy-increasing approximation of the 0\ell_0 norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the 0\ell_0 norm can be controlled. We prove that the series of the approximations asymptotically coincides with the 1\ell_1 and 0\ell_0 norms when the approximation accuracy changes from the worst fitting to the best fitting. When measurements are noise-free, an optimization scheme is proposed which leads to a number of weighted 1\ell_1 minimization programs, whereas, in the presence of noise, we propose two iterative thresholding methods that are computationally appealing. A convergence guarantee for the iterative thresholding method is provided, and, for a particular function in the class of the approximating functions, we derive the closed-form thresholding operator. We further present some theoretical analyses via the restricted isometry, null space, and spherical section properties. Our extensive numerical simulations indicate that the proposed algorithm closely follows the performance of the oracle estimator for a range of sparsity levels wider than those of the state-of-the-art algorithms.Comment: Submitted to IEEE Trans. on Signal Processin

    Quasi-concave density estimation

    Full text link
    Maximum likelihood estimation of a log-concave probability density is formulated as a convex optimization problem and shown to have an equivalent dual formulation as a constrained maximum Shannon entropy problem. Closely related maximum Renyi entropy estimators that impose weaker concavity restrictions on the fitted density are also considered, notably a minimum Hellinger discrepancy estimator that constrains the reciprocal of the square-root of the density to be concave. A limiting form of these estimators constrains solutions to the class of quasi-concave densities.Comment: Published in at http://dx.doi.org/10.1214/10-AOS814 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Convex function and optimization techniques

    Get PDF
    Optimization is the process of maximizing or minimizing a desired objective function while satisfying the prevailing constraints. The optimization problems have two major divisions. One is linear programming problem and other is non-linear programming problem. But the modern game theory, dynamic programming problem, integer programming problem also part of the Optimization theory having wide range of application in modern science, economics and management. In the present work I tried to compare the solution of Mathematical programming problem by Graphical solution method and others as well as its theoretic descriptions. As we know that not like linear programming problem where multidimensional problems have a great deal of applications, non-linear programming problem mostly considered only in two variables. Therefore for nonlinear programming problems we have an opportunity to plot the graph in two dimensions and get a concrete graph of the solution space which will be a step ahead in its solutions. Nonlinear programming deals with the problem of optimizing an objective function in the presence of equality and inequality constraints. The development of highly efficient and robust algorithms and software for linear programming, the advent of high speed computers, and the education of managers and practitioners in regard to the advantages and profitability of mathematical modeling and analysis, have made linear programming an important tool for solving problems in diverse fields. However, many realistic problems cannot be adequately represented or approximated as a linear program owing to the nature of the nonlinearity of the objective function or the nonlinearity of any of the constraints

    Computing Normalized Equilibria in Convex-Concave Games

    Get PDF
    Abstract. This paper considers a fairly large class of noncooperative games in which strategies are jointly constrained. When what is called the Ky Fan or Nikaidô-Isoda function is convex-concave, selected Nash equilibria correspond to diagonal saddle points of that function. This feature is exploited to design computational algorithms for finding such equilibria. To comply with some freedom of individual choice the algorithms developed here are fairly decentralized. However, since coupling constraints must be enforced, repeated coordination is needed while underway towards equilibrium. Particular instances include zero-sum, two-person games - or minimax problems - that are convex-concave and involve convex coupling constraints.Noncooperative games; Nash equilibrium; joint constraints; quasivariational inequalities; exact penalty; subgradient projection; proximal point algorithm; partial regularization; saddle points; Ky Fan or Nikaidô-Isoda functions.
    corecore