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CHAPTER -1 

Introduction: 

Optimization is the process of maximizing or minimizing a desired objective function while 

satisfying the prevailing constraints. The optimization problems have two major divisions. One is 

linear programming problem and other is non-linear programming problem. But the modern 

game theory, dynamic programming problem, integer programming problem also part of the 

Optimization theory having wide range of application in modern science, economics and 

management. In the present work I tried to compare the solution of Mathematical programming 

problem by Graphical solution method and others as well as its theoretic descriptions. As we 

know that not like linear programming problem where multidimensional problems have a great 

deal of applications, non-linear programming problem mostly considered only in two variables. 

Therefore for nonlinear programming problems we have an opportunity to plot the graph in two 

dimensions and get a concrete graph of the solution space which will be a step ahead in its 

solutions. 

 

Nonlinear programming deals with the problem of optimizing an objective function in the 

presence of equality and inequality constraints. The development of highly efficient and robust 

algorithms and software for linear programming, the advent of high speed computers, and the 

education of managers and practitioners in regard to the advantages and profitability of 

mathematical modeling and analysis, have made linear programming an important tool for 

solving problems in diverse fields. However, many realistic problems cannot be adequately 

represented or approximated as a linear program owing to the nature of the nonlinearity of the 

objective function or the nonlinearity of any of the constraints.  

 

 

 

 

 

 

 

 

 



 
 

CHAPTER -2 

Convex Functions and Generalization: 

Convex and concave functions have many special and important properties. In this chapter, I 

introduce the important topics of convex and concave functions and develop some of their 

properties. For example, any local minimum of a convex function over a convex set is also a 

global minimum. These properties can be utilized in developing suitable optimality conditions 

and computational schemes for optimality problems that involve convex and concave functions. 

2.1 Definitions and Basic properties: 

Convex Function: A function       defined on a convex subset X of    is said to be convex 

on X if  

 (   (   ) )    ( )  (   ) ( ) 

for each       and   ,   -. The function       is called strictly convex on X if the 

above inequality is true as a strict inequality for each       and   ,   -. 

Concave function: A real-valued function       defined on a convex subset X of    is said 

to be concave on X if 

 (   (   ) )    ( )  (   ) ( ) 

for each        and   ,   -. The function       is called strictly concave on X if the 

above inequality is true as a strict inequality for each       and   ,   -. Also,  ( ) is 

concave on [a, b] if and only if the function –  ( ) is convex on [a, b]. 

Now let us consider the geometric interpretation of convex and concave functions. Let         

be two distinct points in the domain of   , and consider the point    (   )  with   ,   -. 

So for a convex function  , the value of   at points on the line segment     (   ) , is less 

than or equal to the height of the chord joining the points ,   ( )- and ,   ( )-. For the 

concave function, the chord is below the function itself. Hence, a function is both convex and 

concave if and only if it is affine. Figure 2.1 shows some examples of convex and concave 

functions.    
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                          neither convex nor concave 

Figure 2.1 examples of convex and concave functions 

The following are some examples of convex and concave functions.  

Examples of convex functions: 

1. Any function of the form:  ( )              

2. Powers:  ( )         

3. Powers of absolute value:  ( )  | |              

4. Exponential:  ( )                  

5. Every linear transformation taking values in R is convex. 

6.  (     )     
    

        

7. Every norm is a convex function, by the triangle inequality and positive homogeneity.  

8.  ( )           ,   - 

 

 



 
 

Examples of Concave functions: 

1.  ( )      

2.  ( )  √  

3. Any linear function  ( )             

4. The function  ( )      ( ) is concave on the interval ,   - 
5. Logarithm:            

We give below some particularly important instances of convex functions that arise very often in 

practice. 

1. Let   ,               be convex functions. Then, 

(a)  ( )  ∑     
 
   ( ), where      for            is a convex functions. 

(b)  ( )  Maximum {  ( ),   ( )     ( ) } is a convex function. 

2. Suppose than        is a concave function. Let   *   ( )   +  and define 

           ( )  
 

 ( )
   Then,   is convex over S. 

3. Let       be a nondecreasing, univariate, convex function, and let        be a 

convex function. Then, the composite function        defined as  ( )   , ( )- is a 

convex function. 

4. Let        be a convex function, and let         be an affine function of the 

form h(x) =Ax + b, where A is a     matrix and b is a     vector. Then, the 

composite function        defined as  ( )   , ( )- is a convex function. 

2.2  Epigraph and Hypograph of a function: 

A function    on S can be described by the set  *,   ( )-    +      which is referred to as 

the graph of the function. We can construct two sets that are related to the graph of   the 

epigraph, which consists of points above the graph of  , and the hypograph, which consists of 

points below the graph of  . These notions are discussed in the definition 2.2.1 below.  

2.2.1  Definition:  

Let S be a nonempty set in     and let      .The epigraph of  , denoted by        is a subset        

of     defined by 

      *(   )            ( )+       

 

And the strict epigraph of the function is denoted by        

 

         *(   )             ( )+       
 



 
 

The hypograph of a function       is denoted by        is a subset of      defined by 

      *(   )             ( )+       

 

And the strict hypograph of the function is defined by  

       *(   )             ( )+       

A function is convex if and only if its epigraph is a convex set and, equivalently, that a function 

is concave if and only if its hypograph is a convex set. 

        

              

                          

           

                               

                                          

 

         

2.3  Differentiable Convex functions: 

Now we focus on differentiable convex and concave functions. A function       defined on 

an open convex set S of    is said to be differentiable if the gradient 

      ( )  .
  ( )

   
 
  ( )

   
 
  ( )

   
   

  ( )

   
/  

exists at each       

First order differentiable condition: 

Let S be a nonempty open convex set in   , and let       be differentiable on S.   is convex 

if and only if  ( )   ( )    ( ) (   ) for all      . 

 

 



 
 

Second order differentiable condition: 

Let S be a nonempty set in   , and let      . Then,   is said to be twice differentiable if there 

exist a vector   ( )  and a     symmetric matrix H( ), called the Hessian matrix, such that 

  ( )   ( )    ( ) (   )  
 

 
(   )  ( )(   )             . 

For twice differentiable function the Hessian matrix  ( ) is given comprised of the second order 

partial derivatives and is given by 

 

 ( )  

[
 
 
 
 
   ( )

   
  

   ( )

      

   
   ( )

      
 

   ( )

   
 ]

 
 
 
 

    

 

Examples 2.3.1 

Let  (     )             
     

          We  have  

  ( ̅)  [
    ̅    ̅ 

    ̅    ̅ 
]      ( ̅)  0

   
     

1 

Taking  ̅  (   )   the second-order expansion of this function is given by 

 (     )  (   ) .
  

  
/  

 

 
(     ) 0

   
     

1 .
  

  
/ 

Since the given function is quadratic, no remainder term is present there, and so the above 

representation is exact.  

 ( ̅)  0
   
     

1 

and so 

  ( ̅)  0
   

    
1 

We conclude that   ( ̅) is positive definite and so  ( ̅) is negative definite and the function   

is strictly concave. 

 

     (x)        (x)    ...      (x)    

     (x)       (x)    ...     (x)  

 ...   ...    ...   ...  

     (x)       (x)    ...       (x)  



 
 

Examples 2.3.2 

Let  (     )            We have 

  ( ̅)  [    ̅    ̅ 

    ̅    ̅ 
]      ( ̅)  [    ̅    ̅     ̅    ̅ 

    ̅    ̅     ̅    ̅ 
] 

Hence, the second-order expansion of this function about the point  ̅  (   )  is given by 

 ( ̅)     (       ) (
    
    

)   
 

 
(         ) 0      

      1 (
    
    

) 

2.3.3  Theorem: 

Let S be a nonempty set in   , and let       be twice differentiable on S then,   is convex on 

S if and only if the Hessian matrix is positive semi definite (PSD) at each point in S; that is, for 

any  ̅ in S, we have    ( ̅)                   Symmetrically, a function   is concave on S if 

and only if its Hessian matrix is negative semi definite (NSD) everywhere in S, that is, for 

any  ̅   , we have    ( ̅)                   

2.4  Generalizations of a convex function: 

In this section, we present various types of functions that are similar to convex and concave 

functions but that share only some of their desirable properties. We‟ll  learn that many of the 

results do not require the restrictive assumptions of convexity, but rather the less restrictive 

assumptions of quasi-convexity, pseudo-convexity. 

2.4.1 Quasi-convex functions:  

A function       defined on a convex subset S of a real vector space is quasi-convex if for 

any       and   ,    - 

    (   (   ) )      * ( )  ( )+ 

furthermore if 

    (   (   ) )      * ( )  ( )+ 

for any     and   ,   -, then   is strictly quasi-convex.  

The function   is said to be quasiconcave if –   is quasi-convex and a strictly quasi-concave 

functions a function whose negative is strictly quasi-convex. Equivalently a function   is quasi-

concave if 

   (   (   ) )      * ( )  ( )+ 



 
 

and strictly quasi-concave if 

   (   (   ) )      * ( )  ( )+ 

Examples of Quasi-convex functions: 

 √| | is quasi-convex on R. 

       is quasi-linear on   . 

2.4.2  Differentiable Quasi-convex functions: 

Let S be a nonempty open convex set in   , and let        be differentiable on S. Then,   is 

quasiconvex if and only if either one of the following equivalent statements holds: 

 If            ( )   ( )        ( ) (   )   . 

 If              ( ) (   )          ( )   ( ). 

To illustrate the above theorem, let  ( )    .                                                                             

To check quasi-convexity, suppose  (  )   (  )     
    

 . This is true only if        

 Now consider   (  )(     )   (     )  
 . Since      ,  (     )  

    therefore, 

 (  )    (  )     (  )(     )    and hence by the above theorem,   is quasi-convex.  

Consider let  (     )    
    

   Let    (    )  and    (   ) .  (  )     and  (  )  

 , so that  (  )   (  ).  

But,   (  )
 (     )  (   )(    )   . By the necessary part of the theorem,   is not 

quasiconvex. This shows that the sum of two quasi-convex functions is not necessarily quasi-

convex. 

Propositions: 

 A function which is both quasi-convex and quasi-concave is called quasi-linear. 

 Every convex function is quasi-convex. 

 A concave function can be quasi-convex function. For example log(x) is concave, and it 

is quasi-convex. 

 If  ( ) and  ( ) are positive convex decreasing functions, then,  ( ) ( ) is quasi-

convex. 

 Sum of two Quasi-convex functions is not necessarily a Quasi-convex. 

 

 

 

 



 
 

 

2.4.3 Strongly Quasi-convex function: 

The concept of strong convexity extends the notion of strict convexity. Let S be a nonempty 

open convex set in   , and let      . The function   is said to be strongly quasiconvex if for 

each        we have 

                         (   (   ) )      * ( )  ( )+ for each   (   ),           

The function   is said to be strongly quasi-concave if –   is strongly quasi-convex. From the 

definition of convex function, quasi-convex function and strictly quasi-convex function, the 

following statements hold: 

 Every strictly convex function is strongly Quasi-convex. 

 Every strongly quasi-convex function is strictly quasi-convex. 

 Every strongly quasi-convex function is quasi-convex. 

 

2.4.4 Pseudo-convex functions: 

The differentiable strongly (or strictly) quasi-convex functions do not share the property of 

convex functions, which states that if    ( ̅)    at some  ̅  then  ̅ is a global minimum of  . 

This motivates the definition of pseudo-convex functions which share this important property 

with convex functions, and leads to a generalization of various derivative based optimality 

conditions. 

2.4.5  Definition 

Let S be a nonempty open convex set in   , and let        be differentiable on S. The 

function   is said to be pseudo-convex if for each              ( ) (   )     we 

have   ( )   ( ); or, equivalently, if  ( )   ( )  then   ( ) (   )   . 

The function   is said to be pseudo-concave if    is pseudo-convex. 

The function   is said to be strictly pseudo-convex if, for each distinct       satisfying     

  ( ) (   )   , we have  ( )   ( ); or equivalently, if for each distinct        ( )  

 ( ) implies that   ( ) (   )   . The function   is said to be strictly pseudo-concave if –   

is strictly pseudoconvex. 

 

 

 

 



 
 

 

2.5 Relationship among various types of convex functions: 

 

 

 

         Under   differentiability 

 

             Under   differentiability 

 

 

 

 

 

                 Under lower semi continuity 
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Chapter 3   

Constrained Minimization: 

3.1  Introduction and problem formulation: 

The majority of engineering problems involve constrained minimization- that is, the task is to 

minimize a function subject to constraints. Constrained problem may be expressed in the 

following general nonlinear programming form: 

  Minimize     ( ) 

  subject to     ( )                         (3.1.1) 

  and                 ( )                        

Where   (          )  is a column vector of n real-valued design variables. In equation 

(3.1.1),          is the objective or cost function,      
    are inequality constraints 

and     
   , are equality constraints. A vector      satisfying all the constraints is called a 

feasible solution to the problem. The collection of all such solutions forms the feasible region. 

The nonlinear programming problem, then, is to find a feasible point    such that   ( )   (  ) 

for each feasible point x. Such a point    is called an optimal solution. We define the feasible set 

𝜴 as 

𝜴={       ( )      ( )    } 

The phrase minimization problem refers to finding a local minimizer in the feasible set 𝜴. 

3.2  Graphical method: 

The graphical method for solving mathematical programming problem is based on a well-defined 

set of logical steps. Using graphical method, the given programming problem can be easily 

solved with a minimum amount of computational effort. We know that the simplex method is the 

well-studied and widely useful method for solving linear programming problem, while for the 

class of nonlinear programming no such widely useful method exists. Programming problems 

involving only two variables can easily solved graphically. The algorithms or the systematic 

procedure is discussed as follows: 

Algorithm: The solution nonlinear programming problem by graphical method, in general, 

involves the following steps:  

 

Step-1: Construct the graph of the given nonlinear programming problem. 

 Step-2: Identify the convex region (solution space) generated by the objective function and 

constraints of the given problem.  



 
 

Step-3: Determine the point in the convex region at which the objective function is optimum 

(maximum or minimum).  

Step-4: Interpret the optimum solution so obtained. 

3.2.1  Solution of various kinds of problems by graphical method: 

Case -1: Problems with linear objective function and nonlinear constraints: 

Consider the problem  

Maximize                     

Subject to           
    

        (3.2.1) 

         

              

We„ll solve this problem by graphical method.                                                                                                                    

 

 

 

 

 

 

 

 

              A                        B 
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    O          D 

 

 

   Figure 3.1 

 



 
 

For this, we have to trace the graph of the constraints of the problem considering inequalities as 

equations in the first quadrant (since            ). We get the above convex region OABCD. 

We have to find a point which maximize the value of Z and also lies in the convex region 

OABCD. The desired point is obtained by moving parallel to            for some k, so long 

as           touches the extreme boundary point of the convex region OABCD. Hence C 

(2, 4) gives the maximum value of Z. 

                          at              . 

 

Case-2 Problems with linear objective function and nonlinear as well as linear constraints: 

 

Consider the problem  

Maximize                   

Subject to          
    

        (3.2.2) 

           

              

We„ll solve this problem by graphical method.                                                                                                                    

 

 

 

 

 

 

 

 

 

              

     

 
 

  A (0, 1) 

 

    B .
 

 
 
 

 
/ 

 

 

 

 

 

      

      O (0, 0)   C (1, 0) 

 

Figure 3.2 

 



 
 

For this we see that our objective function is linear and constraints are nonlinear. Constraints one 

is a circle of radius 1 with center at (0, 0) and constraints two is a straight line. OABC is the 

convex region having extreme points O (0, 0), A (0, 1), B .
 

 
 
 

 
/ and C (1, 0). 

Max   
 

 
   

 

 
 

  

 
   at    

 

 
  and    

 

 
 . 

 

The nonlinear programming problems having more than two variables can‟t be solved using 

graphical method. In such cases we have to use the method of Lagrange multipliers.  

 

3.3  Lagrange multipliers method: 

The basic ideas behind Lagrange multipliers can be illustrated by consider the following special 

case of the problem defined by Eq. (3.3.1) with three variables and only two equality constraints: 

 Min  (        ) 

Subject to 

   (        )          (3.3.1) 

   (        )    

The feasible set 𝜴 is a curve in   , determined by the intersection of two surfaces given by    

and   . We assume that    (  
    

    
 ) is a point of minimum in 𝜴 and that the functions 

         have continuous first order derivatives on some open set containing    and 

    ( 
 ),    ( 

 ) are linearly independent. Since    ( 
 )      , are linearly independent and 

continuous,       can be solved in term of    as     (  )        (  ) in the 

neighborhood around   . Further u and v are differentiable around   . Hence, Eq. (3.3.1) reduces 

to an unconstrained minimization problem of the following form 

 
   

    
   (    (  )  (  ))                                         (3.3.2) 

involving a single variable   . Since   
  is a point of minimum of Eq. (3.3.2), we have 

                  (  
 
)        

 
  

   
 

  

   

  

   
 

  

   

  

   
                                            (3.3.3) 

holds at    (  
    

    
 ). Also, from the constraint equations, we have two additional 

relations 

   

   
          

 



 
 

 
   

   
 

   

   

  

   
 

   

   

  

   
                               (3.3.4) 

at    (  
    

    
 ). From Eq. (3.3.3) and Eq. (3.3.4)   

 

[
 
 
 
 

 
  

   

  

   ]
 
 
 
 

          ,  (  )    ( 
 )    ( 

 )-  

Since (1,
  

   
 

  

   
) is not a null vector, we have det A= 0, which implies 

    (  )      ( 
 )      ( 

 )                         (3.3.5) 

where a, b, c are not all zero. But     as    ( 
 ),    ( 

 ) are linearly independent and hence 

there exist      , both not simultaneously zero, such that 

   (  )       ( 
 )       ( 

 )                        (3.3.6) 

Here       are called Lagrange multipliers. So, in the equality constrained minimization 

problems, we have to find the critical point of the Lagrange function 

  (        )   (  )      ( 
 )      ( 

 )   (3.3.7) 

instead of the critical points of  (  ). The minimum of the Lagrangian function is also a 

minimum of  , because equality constraints at the critical point    imply that  

     ( 
 )      ( 

 )    

And hence  

  (        )   (  ) 

The above analysis helps us in obtaining the following generalization of the above fact the         

n-dimensional minimization problem with equality constraints: 

 min  (          ) 

subject to                            (3.3.8) 

   (          )          

 

 



 
 

Example 3.3.1 Solve the problem 

 Min       

subject to 

   
    

    

Solution: The Lagrangian  (    ) is given by 

   (    )         (  
    

   )  

     The critical points of the Lagrangian  (    ) are given by    (    )    

  
  

   
                              ( ) 

  
  

   
                              ( ) 

  
  

  
   

    
                       ( ) 

Solving (1) and (2) and substituting in (3) we get, 

 (  
    )  ( 

 

√ 
  

 

√ 
 

 

√ 
) 

 (  
    )  (

 

√ 
 

 

√ 
  

 

√ 
) 

The Hessian matrix of  (    ) with respect to   is given by  

   ( 
   )  0

   
   

1 

The Hessian matrix    is positive definite at (  
    ) and negative definite at (  

    ) 

Hence (  
    ) is a minimizer and (  

    ) is a maximizer for the above problem. 

Example 3.3.2 

 Minimize  ( )=   
    

    
  

subject to 

              

            
 

 
 

Solution: The Lagrangian  (    ) is given by 



 
 

  (     )    
    

    
    (            )    (           

 

 
) 

The critical points of the Lagrangian  (    ) are given by   (     )   , we get 

              

               

             

                

            
 

 
   

Solving these five equations, we get             and     
 

 
             .                   

The Hessian of  (     ) with respect to    is [
   
   
   

] , which is positive definite and 

hence (         ) is a point of minimum. 

Min     
    

    
  .

 

 
/
 

    .
 

 
/
 

 
 

 
 

Example 3.3.3 

 Minimize        

Subject to   
    

      

We have           (  
    

   )   

The optimality conditions are 

    
  

   
                 

 

 
 

    
  

   
                 

 

  
 

Substituting for x (λ) into the constraint equation      we get    
√ 

 
   for each root, we 

obtain 

   
√ 

 
       

   
 

√ 
   

   
 

√ 
  Point A in fig.3.1  

    
√ 

 
       

  
 

√ 
   

  
 

√ 
  Point B in fig.1 



 
 

The minimum point is A. 

 

 

 

                                                                                            

        B(
 

√ 
 

 

√ 
) 

 

 

                 A( 
 

√ 
  

 

√ 
)                                                                                                                                 

             

             

             

             

                

    Figure 3.3 
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Chapter 4  

Optimality conditions: 

4.1 The Fritz John (FJ) optimality conditions: 

We now reduce the necessary optimality conditions to a statement in terms of gradients of the 

objective function and of the constraints. The resulting optimality conditions, credited to Fritz 

John, are given below. The Fritz John conditions are a necessary condition for a solution in 

nonlinear programming to be optimal. 

The concept of Kuhn-tucker conditions and Duality are central discussion on constrained 

optimization.  

4.1.1 Theorem (The Fritz John (FJ) necessary conditions): 

Let X be a nonempty open set in    and let       , and      
    for  i=1,2,…,m. 

Consider the problem in Eq. 3.1.1 to  

Minimize        ( ) 

subject to        ( )                           (4.1.1)   

       and            ( )                            ,     

Let  ̅ be a feasible solution, and denote   *    ( )   +  Suppose that    for     is 

continuous at  ̅, that          are differentiable at  ̅, and that     for           is continuously 

differentiable at  ̅  If  ̅ locally solves above problems, then there exists scalars               

and    for            such that  

    ( ̅)  ∑     ( ̅

 

   

)  ∑  

 

   

   ( ̅)    

                           (4.1.2) 

            (     ) 

Where    is the vector whose components are             and    (          )
 .  

Furthermore, if each    for i L I is also differentiable at  ̅, then the Fritz John conditions can be 

written in the following equivalent form 

 

 



 
 

             ( ̅)  ∑     ( ̅

 

   

)  ∑  

 

   

   ( ̅)    

    ( ̅)               (4.1.3) 

                        

            (     ) 

In the condition of above theorem, the scalars           for           are usually called 

Langrage multipliers. The condition that  ̅  is feasible to the problem Eq. (4.1.1) is called the 

primal feasibility (PF) condition, whereas the requirements      ( ̅)  ∑      ( ̅
 
   )  

∑   
 
      ( ̅)   , and         are sometimes called to as dual feasibility (DF) conditions. 

The condition      ( ̅)    for          is called the complementary slackness (CS) 

condition. Together, the PF, DF, and the CS conditions are called the Fritz John (FJ) optimality 

conditions. Any point  ̅ for which there exist Lagrangian multipliers (     ) such that ( ̅      ) 

satisfy the FJ conditions is called a Fritz John (FJ) point. 

 

Example 4.1.2 

Minimize (    )  (    )  

 Subject to   
    

    

            

         

         

The feasible region for the above problem is illustrated in figure 3.2. The Fritz -John conditions 

are true at the optimal point (2, 1). The set of binding constraints I at   (   )   is given by     

I= {1, 2}. Thus, the Lagrangain multipliers     and    associated with       and      

   respectively, are equal to zero.  

                ( )   (     )           ( )   (   )           ( )   (   )  

 

 

 

 



 
 

 

    

 

 

     (0, 2)           ( ̅) 

       

          ( ̅) 

               (2, 1) 

     

      ( ̅) 

      (0, 0)       (√   )              

  Figure 4.1 

Hence, to satisfy the Fritz John conditions, we need a nonzero vector (            )    satisfying 

  (
  

  
)    (

 

 
)    (

 

 
)   (

 

 
) 

This implies    
  

 
 and    

   

 
 . Taking    and     as such for any     , we satisfy the 

Fritz Jhon conditions.  

Let us check whether the point   (   )  is a FJ point, here, the set of binding constraints is 

  *   + and thus          Note that 

  ( )   (     )     ( )   (    )         ( )   (    )  

Also the DF condition 

  (
  

  
)    (

  

     
)    (

    

  
)   (

 

 
) 

holds true if and only if          and         . If     , then        , contradicting 

the nonnegativity restrictions. If, on the other hand,     , then        , which contradicts 

the stipulation that the vector (        ) is nonzero. Thus, the Fritz John conditions do not 

hold true at  ̂  (   ) , which also shows that the origin is not a local optimal point.  

 



 
 

4.2     KKT optimality conditions with both Equality and Inequality constraints: 

In the Fritz John conditions, the Langragian multiplier associated with the objective functions not 

necessarily positive. Under further assumptions on the constraint set we can show that at any 

local minimum, there exists a set of Langragian multiplier for which    is positive. So we obtain 

a generalization of the KKT necessary optimality conditions.   

4.2.1  KKT necessary optimality conditions: 

Let X be a nonempty open set in    and let       , and     
    for  i=1,2,…,m. 

Consider the problem to  

Minimize        ( ) 

subject to       ( )                          (4.2.1)   

      and           ( )                            ,     

Let  ̅ be a feasible solution, and denote   *    ( )   +  Suppose that    for     is 

continuous at  ̅, that          are differentiable at  ̅, and that    for            is 

continuously differentiable at  ̅  We assume that  ̅ is a regular point (gradients of active 

inequalities and of all the equality constraints are linearly independent). If  ̅ locally solves above 

problems, and each    for i L I is also differentiable at  ̅, then there exists scalars             

and    for           exist such that  

  ( ̅)  ∑     ( ̅

 

   

)  ∑  

 

   

   ( ̅)    

                               (4.2.2) 

         ( ̅)                   

                                         

The Lagrange multipliers    associated with the equality constraints are unrestricted in sign–they 

can be positive or negative; only the multipliers associated with the inequalities have to be non-

negative. 

4.2.2     KKT Sufficient Conditions for Optimality: 

The KKT conditions are necessary conditions: if a point  ̅  is local minimum to the problem in 

Eq. (4.1.1), then it should satisfy Eq. (4.2.2). Conversely, if a point  ̅ satisfies Eq. (4.2.2), it can 

be a local minimum or a saddle point (neither a minimum nor a maximum). A set of sufficient 



 
 

conditions will now be stated which, if satisfied, will ensure that the KKT point is a strict local 

minimum. 

Let            be twice-continuously differentiable functions. Then, the point  ̅ is a strict local 

minimum to Eq, (4.1.1) if there exit Lagrange multipliers µ and λ, such that   

 KKT necessary conditions in Eq. (4.2.2) are satisfied at   ̅ and 

 The Hessian matrix 

   ( ̅)     ( ̅)  ∑   
 
       ( ̅)  ∑   

 
       ( ̅)            (4.2.3) 

is positive definite on a subspace of    as defined by the condition: 

     ( ̅)    for every vector     which satisfies 

   ( ̅)                      ( ̅)      for all i for which    ( ̅)              

      (4.2.4) 

Consider the following two remarks to understand Eq. (4.2.4): 

(1) To understand what y is, consider a constraint h(x) = 0. This can be graphed as a surface 

in x-space. Then,   ( ̅) is normal to the tangent plane to the surface at   ̅. Thus, if 

  ( ̅)      that means y is perpendicular to    and is hence in the tangent plane. The 

collection of all such y‟s will define the entire tangent plane. This tangent plane is a 

subspace of the entire space   . Thus, the KKT sufficient conditions only require    ( ̅) 

to be positive definite on the tangent space M defined by M={     ( ̅)       

             ( ̅)                           ( ̅)            }  

(2) If       ( ̅)    for every vector       then the Hessian matrix    ( ̅) is positive 

definite (on the whole space   ). Then it will also positive definite on a (tangent) 

subspace of    . 

Example 4.2.3 

For the problem  

                             Minimize   (    )  (    )  

                             Subject to 2                                

                                    

                                     

(i) Write down the KKT conditions and find out the KKT points. 

(ii) Graph the problem and check whether the KKT point is a solution to the problem. 



 
 

(iii) Sketch the feasible “cone” at the points (1, 0); that is, sketch the intersection of the 

descent and feasible cones. 

(iv) What is the feasible cone at the KKT point obtained in (i)? 

We have       (        )             

The KKT conditions 

 (    )           

 (    )          

  (        )                      

           

                           

Owing to the „switching‟ nature of the conditions         we need to guess which constraints 

are active and then proceed with solving the KKT conditions. We have the following cases: 

                                                              (only 1
st
 constraints active) 

                                                              (1st
 and 2

nd
 constraints active) 

                

                

                

                

               

                

Now, in case-2:                  We get, upon using the KKT conditions, 

                                         

Since    is negative, we have violated the KKT conditions and here our guess is incorrect. The 

correct guess is Case 1:               . This leads to:                       

Substituting this into      gives          We can then recover                Thus, we 

have the KKT point 

                                            



 
 

The feasible cone at    (   )  is shown in figure below. At the point    (       )   we 

have the negative cost gradient to be     (       )     (   )  and the active constraint 

gradient to be     (   )  . Since these two vectors are aligned with one another, there is no 

descent/feasible cone (or the cone is empty). 

                 

                 

         (0,2) 

   (       ) 

 

                                    

 Feasible                                        feasible cone at (1,0)                                                      

region,𝜴 

 

                                                           (1,0)                     

                    Figure 4.2 

 

4.3     Duality: 

 Consider the general nonlinear programming problem  

Minimize     ( ) 

  subject to       ( )                           (4.3.1) 

       and            ( )                        

Where   (          )  is a column vector of n real-valued design variables. In equation 

(4.3.1),          is the objective or cost function,      
   , are inequality constraints 

and     
   , are equality constraints. 

First, we assume that all functions are twice-continuously differentiable and a solution          

of the „primal‟ problem in Eq. (4.3.1) is a regular point satisfying the KKT necessary conditions 

given in the previous section. In the sufficient conditions for a minimum to Eq. (4.3.1), we only 

required the Hessian of the Lagrangian    (        ) be positive definite on the tangent 



 
 

subspace. Now, to introduce duality, we have to make the stronger assumption that the Hessian 

of the Lagrangian    (  ) is positive definite. This is a stronger assumption because we require 

positive definiteness of the Hessian at    on the whole space    and not just on a subspace. This 

is equivalent to requiring L to be locally convex at   . We can state the following equivalent 

theorems, under these assumptions: 

(1)      together with    and   , is solution to the primal problem of Eq.(4.3.1) 

(2)             is a saddle point of the Lagrangian function  (     ). That is,                                                                                    

 (      )   (        )   (       )                                                                                   

in the neighborhood of          .  

(3)          solves the dual problem     

            

                     Maximize         ( )     ( )     ( )   (4.3.2) 

                      subject to           ( )  ,  ( )-  ,  ( )-      (4.3.3) 

            and                                     (4.3.4)   

where both x and Lagrange multipliers     are variable and the two extrema are equal: 

 (        )   (  )   

From the above discussion the following two corollaries follows: 

(a) Any x that satisfies the constraints in Eq. (4.3.1) is called primal-feasible and any x, µ, λ 

that satisfies Eq. (4.3.3) and (4.3.4) is called dual-feasible. We know that any primal-

feasible point provides us with a upper bound on the optimum cost: 

 (  )   ( )                                   

Any dual feasible point provides a lower bound on the optimum cost as 

 (     )   (  )                                     

It is important to realize that the lower bound is only on the local minimum of f in the 

neighborhood. 

(b) If the dual objective is unbounded, then the primal has no feasible solution. 

 

4.4       The Dual Function   (   ): 

The conditions in Eq. (4.3.3), i.e.       ( )    ( )    ( )   , can be viewed as 

equations involving two sets of variables: x and [µ, λ]. The Jacobian with respect to the x 

variables of this system, is    . Since this matrix is non-singular at   (by the hypothesis that it is 



 
 

positive definite), we can invoke the Implicit Function Theorem which states that in a small 

neighborhood of ,        -, such that for µ, λ in this neighborhood,    (   ) is a 

differentiable function of     with    ( (   )    )      This gives us to treat L as an implicit 

function of     as    ( (   )    )   which is called the „dual function‟  (   ).  Since     

will remain positive definite near   , we can define  (   ) from the minimization problem 

 (   )           ( )     ( )     ( )   (4.4.1) 

Where       are near        and where the minimization is carried out with respect to x 

near   . 

4.4.1      Gradient and Hessian of  (   ) in Dual Space:  

The gradient of the dual function   is 

 
  

   
   , (   )-                                           (4.4.2)    

 
  

   
   , (   )-                                             (4.4.3)   

The proof follows from: 
  

   
 

  ( (   )    )

   
 

  

   
      

   
 

  

   
    in view of the fact that 

     by the very construction of   . 

      The Hessian of   in     space is given by 

  
     ,   (  )-     

Where the rows of A are the gradient vectors of the constraints. Since we assume that    is a 

regular point, A has full row rank and hence the dual Hessian is negative definite.  

Example: 4.4.2 

 Minimize    (    )  (    )  

                    Subject to                                    

                            

                            

We have    (    )  (    )    (        )           . It is clear that     is 

positive definite. Setting 
  

   
       

  

   
     we obtain 

   
  

 
         

  

 
 

  

 
   



 
 

 

 

Substituting into L, we have 

 ( )   
 

 
  

  
  

 

 
 

  
 

 
      

    

 
             

From Eq. (4.4.2) and eq. (4.4.3) we have 

  

   
  

 

 
      

  

 
   

   
  

   
  

  

 
      

   
  

   
  

  

 
 

  

 
   

    
  

 
          

  

 
 

  

 
     

we have  
  

   
    

The dual problem is  

max ( )    
 

 
  

  
  

 

 
 

  
 

 
      

    

 
             with the restriction that 

                

The solution is    
          

        
     Correspondingly, we obtain   ( 

 )      and 

  ( 
 )     . 
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