13,566 research outputs found

    Quasi-birth-and-death processes with level-geometric distribution

    Get PDF
    A special class of homogeneous continuous-time quasi-birth-and-death (QBD) Markov chains (MCS) which possess level-geometric (LG) stationary distribution is considered. Assuming that the stationary vector is partitioned by levels into subvectors, in an LG distribution all stationary subvectors beyond a finite level number are multiples of each other. Specifically, each pair of stationary subvectors that belong to consecutive levels is related by the same scalar, hence the term level-geometric. Necessary and sufficient conditions are specified for the existence of such a distribution, and the results are elaborated in three examples

    Hamiltonian analysis of subcritical stochastic epidemic dynamics

    Get PDF
    We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models, and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics

    Matrix geometric approach for random walks: stability condition and equilibrium distribution

    Get PDF
    In this paper, we analyse a sub-class of two-dimensional homogeneous nearest neighbour (simple) random walk restricted on the lattice using the matrix geometric approach. In particular, we first present an alternative approach for the calculation of the stability condition, extending the result of Neuts drift conditions [30] and connecting it with the result of Fayolle et al. which is based on Lyapunov functions [13]. Furthermore, we consider the sub-class of random walks with equilibrium distributions given as series of product-forms and, for this class of random walks, we calculate the eigenvalues and the corresponding eigenvectors of the infinite matrix R\mathbf{R} appearing in the matrix geometric approach. This result is obtained by connecting and extending three existing approaches available for such an analysis: the matrix geometric approach, the compensation approach and the boundary value problem method. In this paper, we also present the spectral properties of the infinite matrix R\mathbf{R}

    A note on the invariant distribution of a quasi-birth-and-death process

    Get PDF
    The aim of this paper is to give an explicit formula of the invariant distribution of a quasi-birth-and-death process in terms of the block entries of the transition probability matrix using a matrix-valued orthogonal polynomials approach. We will show that the invariant distribution can be computed using the squared norms of the corresponding matrix-valued orthogonal polynomials, no matter if they are or not diagonal matrices. We will give an example where the squared norms are not diagonal matrices, but nevertheless we can compute its invariant distribution

    Poisson's equation for discrete-time quasi-birth-and-death processes

    Full text link
    We consider Poisson's equation for quasi-birth-and-death processes (QBDs) and we exploit the special transition structure of QBDs to obtain its solutions in two different forms. One is based on a decomposition through first passage times to lower levels, the other is based on a recursive expression for the deviation matrix. We revisit the link between a solution of Poisson's equation and perturbation analysis and we show that it applies to QBDs. We conclude with the PH/M/1 queue as an illustrative example, and we measure the sensitivity of the expected queue size to the initial value

    Some comments on quasi-birth-and-death processes and matrix measures

    Get PDF
    In this paper we explore the relation between matrix measures and Quasi-Birth-and-Death processes. We derive an integral representation of the transition function in terms of a matrix valued spectral measure and corresponding orthogonal matrix polynomials. We characterize several stochastic properties of Quasi-Birth-and-Death processes by means of this matrix measure and illustrate the theoretical results by several examples. --Block tridiagonal infinitesimal generator,Quasi-Birth-and-Death processes,spectral measure,matrix measure,canonical moments
    corecore