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Abstract. A special class of homogeneous continuous-time quasi-birth-and-death (QBD) Markov
chains (MCs) which possess level-geometric (LG) stationary distribution is considered. Assuming
that the stationary vector is partitioned by levels into subvectors, in an LG distribution all sta-
tionary subvectors beyond a finite level number are multiples of each other. Specifically, each pair
of stationary subvectors that belong to consecutive levels is related by the same scalar, hence the
term level-geometric. Necessary and sufficient conditions are specified for the existence of such a
distribution, and the results are elaborated in three examples.
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1. Introduction. The continuous-time Markov process on the countable state
space S = {(l, i) : l ≥ 0, 1 ≤ i ≤ m} with block tridiagonal infinitesimal generator
matrix

Q =




B0 A0

A2 A1 A0

A2 A1 A0

. . .
. . .

. . .


(1)

having blocks that are (m × m) matrices is called a homogeneous continuous-time
quasi-birth-and-death (QBD) Markov chain (MC). The row sums of Q are zero, mean-
ing (B0 + A0)e = 0 and (A0 + A1 + A2)e = 0, where e is a column vector of 1’s with
appropriate length. The matrices A0 and A2 are nonnegative, and the matrices B0

and A1 have nonnegative off-diagonal elements and strictly negative diagonals. The
first component, l, of the state descriptor vector denotes the level and its second com-
ponent, i, the phase. In homogeneous QBD MCs, the elements of B0, A0, A1, and
A2 do not depend on the level number.

Neuts has done substantial work in the area of matrix analytic methods for such
processes and has written two books [11], [12]. An informative resource that dis-
cusses the developments in the area since then is the recent book of Latouche and
Ramaswami [9]. The most significant application area of these methods at present is
the performance evaluation of communication systems. See, for instance, [13] for sev-
eral case studies covering application areas from asynchronous transfer mode (ATM)
networks to World Wide Web traffic and Transmission Control Protocol/Internet Pro-
tocol (TCP/IP) networking.

We assume that the homogeneous continuous-time QBD MC at hand is irreducible
and positive recurrent, meaning its steady state probability distribution vector, π
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282 TUĞRUL DAYAR AND FRANCK QUESSETTE

(see [14]), exists. Recall that an MC is said to be positive recurrent if the mean time
to return to each state for the first time after leaving it is finite [14, p. 9]. In infinite
QBD MCs, this requires that the drift to higher level states be smaller than the
drift to lower level states [5, pp. 153–154]. Throughout the paper, we adhere to the
convention that probability vectors are row vectors. Being a stationary distribution,
π satisfies πQ = 0 and πe = 1. Now, let π be partitioned by levels into subvectors πl,
l ≥ 0, where πl is of length m. Then π also satisfies the matrix-geometric property
[9, p. 142]

πl+1 = πlR for l ≥ 0,(2)

where the matrix R of order m records the rate of visit to level (l+1) per unit of time
spent in level l. Fortunately, the elements of R for homogeneous QBD MCs do not
depend on the level number. Quadratically convergent algorithms for solving QBD
MCs appear in [8], [4], [1].

In this paper, we consider a special class of homogeneous continuous-time QBD
MCs which possess what we call level-geometric (LG) stationary distribution. To the
best of our knowledge, this property has not been explicitly defined before, and hence
our “level-geometric” designation. An LG distribution is one that satisfies

πl+1 = απl for l ≥ L,(3)

where α ∈ (0, 1) and L is a finite nonnegative integer. Note that an LG distribu-
tion with L = 0 is a product-form solution. An LG distribution can be expressed
alternatively as

πL+k = (1 − α)αka for k ≥ 0,(4)

where a is a positive probability vector of length m, with ae = 1 when L = 0. In an
LG distribution, the level is independent of the phase for level numbers greater than or
equal to L, and the marginal probability distribution of the levels are given by πL+ke =
(1 − α)αkae [9, pp. 295–299] for k ≥ 0. Throughout the paper, we refer to an LG
distribution for which L is the smallest possible nonnegative integer that satisfies (3)
as an LG distribution with parameter L. Our motivation is to come up with a solution
method for this special class of QBD MCs that does not require R to be computed.
We remark that if Sε is the number of iterations required to reach an accuracy of ε
by the successive substitution algorithm [5, p. 160], then the computation of R with
quadratically convergent algorithms takes about O(log2 Sε) iterations (hence, the term
quadratically convergent), each of which has a time complexity of O(m3) floating-
point operations. The results that we develop can be extended to the homogeneous
discrete-time case without difficulty.

In section 2, we provide background information on the solution of QBD MCs
with special structure. In section 3, we give three examples of QBD MCs with LG
stationary distribution. In section 4, we specify conditions related to such a distribu-
tion and show how it can be computed when it exists. In section 5, we reconsider the
three examples of section 3 in light of the new results introduced in section 4. We
conclude in section 6.

2. Background material. In this section, an overview of some concepts dis-
cussed in [9] and relevant propositions are given. Wherever something has been taken
from [9], the appropriate reference to the corresponding page(s) is placed.
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QBDs WITH LEVEL-GEOMETRIC DISTRIBUTION 283

Due to the fixed pattern of transitions among levels and within each level, it is
not difficult to check the irreducibility of Q. The next proposition is about checking
the positive recurrence of Q when Q and A = A0 + A1 + A2 are both irreducible.
When Q is irreducible but A has multiple irreducible classes, one can resort to the
theorem in [9, p. 160]. Note that A is an infinitesimal generator matrix.

Proposition 1. If Q and A are irreducible, then Q is positive recurrent if and
only if πA(A0 −A2)e < 0, where πA satisfies πAA = 0 and πAe = 1 [9, p. 158].

Throughout this paper, we assume that the homogeneous continuous-time QBD
MC at hand is irreducible and positive recurrent. Now, let ρ(R) denote the spectral
radius of R (i.e., ρ(R) = max{|λ| | λ ∈ λ(R)}, where λ(R) = {λ | Rv = λv, v 
= 0} is
its spectrum). Then, ρ(R) < 1 [9, p. 133].

The next proposition specifies necessary and sufficient conditions for the existence
of an LG distribution with parameter L = 0.

Proposition 2. The stationary distribution of Q is LG with parameter L = 0 if
and only if there exists a positive vector a with ae = 1 and a positive scalar α = ρ(R)
with α < 1 such that a(A0 +αA1 +α2A2) = 0 and a(B0 +αA2) = 0 [9, pp. 297–298].

This proposition, although very concise and to the point, has two shortcomings.
First, it does not indicate how to check for an LG distribution with parameter L ≥ 1.
Second, it requires the solution of a nonlinear system of equations.

The following two propositions indicate the improvement that is obtained in the
solution when A2 and/or A0 are rank-1 matrices.

Proposition 3. When A2 is of rank-1, then R = −A0(A1 + A0eb
T )−1, where

A2 = cbT and bT e = 1 [9, p. 197]. Furthermore, π0 can be computed up to a multi-
plicative constant using π0(B0 + A0eb

T ) = 0 [9, p. 236].
Hence, it is relatively simple to compute the stationary distribution when A2 is

of rank-1.
Proposition 4. When A0 is of rank-1, then R = cξT , where A0 = cbT , bT e = 1,

ξT = −bT (A1 + αA2)−1, and α = ξT c with α = ρ(R) [9, p. 198]. The stationary
subvectors satisfy π0 = π1C0, where C0 = −A2B

−1
0 , and πl = πl+1C1 for l ≥ 1, where

C1 = −A2(A1 + A2eb
T )−1 [9, p. 236].

Corollary 1. When A0 is of rank-1, then R is also of rank-1, and R2 = αR
thereby implies πl+1 = απl for l ≥ 1. Hence, Q has an LG distribution with parameter
L ≤ 1.

The next section elaborates these results with three examples.

3. Examples. The following examples all have LG distributions, and they aid in
understanding the concepts introduced in section 2 and the concepts to be developed
in section 4. In order to compactly describe single queueing stations, we use the so-
called Kendall notation, which consists of six identifiers separated by vertical bars [5,
pp. 13–14]:

Arrivals|Services|Servers|Buffersize|Population|Scheduling.

Here Arrivals and Services, respectively, characterize the customer arrival and
service processes by specifying the interarrival and interservice distributions. For these
distributions there are various possibilities, among which are M (i.e., Markovian) for
exponential and Ek for k-phase Erlang. Servers gives the number of service-providing
entities; Buffersize gives the maximum number of customers in the queueing station,
including any in service; Population gives the size of the customer population from
which the arrivals are taking place; and Scheduling specifies the employed scheduling
strategy. When the Buffersize and/or the Population are omitted, they are assumed
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284 TUĞRUL DAYAR AND FRANCK QUESSETTE

to be infinitely large. When the scheduling strategy is omitted, it is assumed to be
first come, first served (FCFS).

3.1. Example 1. The first example we consider is a system of two independent
queues, where queue 1 is M|M|1 and queue 2 is M|M|1|m − 1. Queue i ∈ {1, 2}
has a Poisson arrival process with rate λi and an exponential service distribution
with rate µi. This system corresponds to a QBD process with the level representing
the length of queue 1, which is unbounded, and the phase representing the length
of queue 2, which can range between 0 and (m − 1). We assume λ1 < µ1. Letting
d = λ1 + λ2 + µ1 + µ2, we have A0 = λ1I, A2 = µ1I,

A1 =




−(d− µ2) λ2

µ2 −d λ2

. . .
. . .

. . .

µ2 −d λ2

µ2 −(d− λ2)


 ,

and

B0 =




−(λ1 + λ2) λ2

µ2 −(d− µ1) λ2

. . .
. . .

. . .

µ2 −(d− µ1) λ2

µ2 −(λ1 + µ2)


 .

Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =




−λ2 λ2

µ2 −(λ2 + µ2) λ2

. . .
. . .

. . .

µ2 −(λ2 + µ2) λ2

µ2 −µ2


 ,

which is irreducible, and πA is the truncated geometric distribution with parameter
λ2/µ2 [5, p. 84]. Hence, πA(A0 −A2)e = λ1 −µ1 < 0 and Q is positive recurrent. For
this example, α = λ1/µ1, ak = νk(1 − ν)/(1 − νm), 0 ≤ k ≤ m− 1, and L = 0, where
ν = λ2/µ2, turn out to be the parameters in (4) that specify an LG distribution.

Recalling that an MC is said to be lumpable with respect to a given partitioning
if each block in the partitioning has equal row sums [7, p. 124], we remark that the
QBD MC in this example is lumpable, and the lumped chain represents queue 1.

3.2. Example 2. The second example we consider is the continuous-time equiv-
alent of the discrete-time QBD process discussed in [8, pp. 668–669]. The model has
2 phases at each level (i.e., m = 2). Assuming that 0 < p < 1, the process moves
from state (l, 1), l ≥ 1, to (l, 2) with rate p, and to (l − 1, 1) with rate (1 − p). The
process moves from state (l, 2), l ≥ 0, to (l, 1) with rate 2p, and to (l + 1, 2) with
rate (1 − 2p). Finally, the process moves from state (0, 1) to (0, 2) with rate 1. All
diagonal elements of Q are −1. Hence, we have

A0 =

(
0 0
0 1 − 2p

)
, A1 =

(−1 p
2p −1

)
, A2 =

(
1 − p 0

0 0

)
, B0 =

(−1 1
2p −1

)
.
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QBDs WITH LEVEL-GEOMETRIC DISTRIBUTION 285

Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =

(−p p
2p −2p

)
,

which is irreducible, and πA = (2/3 1/3). Hence, πA(A0 − A2)e = −1/3 < 0 and
Q is positive recurrent. For this example, α = (1 − 2p)/(1 − p), a = (1/2 1/2), and
L = 0 turn out to be the parameters in (4) that specify an LG distribution. Direct
substitution in πQ = 0 and πe = 1 confirms this solution.

In this example, Proposition 3 applies with c = (1−p)e1 and b = e1, where ei is the
ith principal axis vector. Hence, R = (1− 2p)eT2 e/(1− p), and ρ(R) = α as expected.
Furthermore, π0 = (1−α)(1/2 1/2). Note that in this example, Proposition 4 applies
as well. The rate matrix is of rank-1 and ξ = e/(1−p). In section 5, we will argue why
this example has an LG distribution with parameter L = 0 and not L = 1. Finally,
we remark that this example is also used as a test case in [1].

3.3. Example 3. The third example we consider is the Em|M|1 FCFS queue
which has an exponential service distribution with rate µ and an m-phase Erlang
arrival process with rate mλ in each phase [9, pp. 206–208]. The expected interarrival
time and the expected service time of this queue are, respectively, 1/λ and 1/µ. We
assume λ < µ. The queue corresponds to a QBD process with the level representing
the queue length (including any in service) and the phase representing the state of
the Erlang arrival process. Letting d = mλ + µ, we have the (m × m) matrices
A0 = mλemeT1 , A2 = µI,

A1 =




−d mλ
. . .

. . .

−d mλ
−d


 , B0 =




−mλ mλ
. . .

. . .

−mλ mλ
−mλ


 .

Q is irreducible, and from Proposition 1 we have

A = A0 + A1 + A2 =




−mλ mλ
. . .

. . .

−mλ mλ
mλ −mλ


 ,

which is irreducible, and πA = eT /m. Hence, πA(A0 − A2)e = λ − µ < 0 and Q is
positive recurrent. Although the Em|M|1 queue does not have an explicit solution, it
can be shown by following the formulae in [6, p. 323] that its stationary distribution
has an LG distribution with parameter L = 1.

In this example, Proposition 4 applies with c = mλem and b = e1, implying R is
of rank-1, C0 = −A2B

−1
0 , and C1 = −A2(A1 + µeeT1 )−1.

The next section builds on the results in section 2 with the aim of coming up with
a solution method to compute an LG distribution when it exists.

4. Checking for and computing the LG distribution. The assumption of
irreducibility of Q implies that the nonnegative matrix A0 has at least one positive row
sum (see (1)). Since we also have (B0 +A0)e = 0, it must be that B0 has nonpositive
row sums with at least one negative row sum. Together with the fact that B0 has
nonnegative off-diagonal elements and a strictly negative diagonal, this implies that
−B0 is a nonsingular M-matrix and −B−1

0 ≥ 0; see [3].

D
ow

nl
oa

de
d 

09
/2

8/
17

 to
 1

39
.1

79
.7

2.
19

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



286 TUĞRUL DAYAR AND FRANCK QUESSETTE

The next proposition is essential in formulating the results in this section.

Proposition 5. The sequence of matrices Dl+1 = A1 −A2D
−1
l A0, l ≥ 0, where

D0 = B0, is well defined. For l ≥ 0, −Dl is a nonsingular M-matrix, −D−1
l ≥ 0, and

DT
l denotes the diagonal block at level l after l steps of block Gaussian elimination

(GE) on QT . Furthermore, πl = πl+1Cl, where Cl = −A2D
−1
l ≥ 0 for l ≥ 0.

Proof. Since −D0 is a nonsingular M-matrix, let us show that −D1 is too. It is
possible to construct the infinitesimal generator

Q̄ =


D0 A0 0

A2 A1 s
0 rT δ




so that it is irreducible. Here s = A0e, r is any nonnegative vector that ensures the
irreducibility of Q̄, and δ = −rT e. Now let X = −Q̄ and consider the partitioning

X =

(
X11 X12

X21 X22

)
=


 −D0 −A0 0

−A2 −A1 −s
0 −rT −δ


 .

The negated infinitesimal generator X is an irreducible singular M-matrix [3] by its
definition. Therefore, the Schur complement [10, p. 123] S of X11, which is given by

S = X22 −X21X
−1
11 X12 =

(−A1 + A2D
−1
0 A0 −s

−rT −δ

)
,

is an irreducible singular M-matrix (see Lemma 1 in [2]). All principal submatrices of
an irreducible singular M-matrix except itself are nonsingular M-matrices [3, p. 156].
Hence, −A1 + A2D

−1
0 A0; that is, −D1 is a nonsingular M-matrix and −D−1

1 ≥ 0.
One can similarly show that −Dl is a nonsingular M-matrix and −D−1

l ≥ 0 for l > 1.

Since QT is a block tridiagonal matrix, block GE on QTπT = 0 yields ZTπT = 0
(or equivalently πZ = 0), where

Z =




D0

A2 D1

A2 D2

. . .
. . .


 ,(5)

D0 = B0, and Dl+1 = A1 −A2D
−1
l A0 for l ≥ 0.

Recalling that π = (π0, π1, . . .) and using πZ = 0, we obtain πlDl + πl+1A2 = 0,
which implies πl = −πl+1A2D

−1
l for l ≥ 0. That Cl ≥ 0 for l ≥ 0 follows from

−D−1
l ≥ 0 and A2 ≥ 0.

4.1. Checking for the LG distribution. The form of Z in (5) together with
Proposition 5 suggests the next lemma.

Lemma 1. If DL+1 = DL for some finite nonnegative integer L, then Dl = DL

for l > L + 1, and πL = πL+kC
k
L for k ≥ 0.

Proof. From Proposition 5 we have DL+1 = A1 − A2D
−1
L A0 and DL+2 = A1 −

A2D
−1
L+1A0. If DL+1 = DL, then DL+2 = A1 − A2D

−1
L A0 = DL+1 = DL. The same

argument may be used to show that Dl = DL for l > L + 2. The second part of the
lemma follows from its first part and the last part of Proposition 5.
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QBDs WITH LEVEL-GEOMETRIC DISTRIBUTION 287

The next theorem states a condition under which one has an LG distribution.
Theorem 1. Let L be the smallest finite nonnegative integer for which DL+1 =

DL. Then the stationary distribution of Q is LG with parameter less than or equal
to L.

Proof. From Lemma 1 and (5), when DL+1 = DL, we have

Z =




D0

A2 D1

. . .
. . .

A2 DL−1

YL ZL


 ,(6)

where

YL =




A2

0
0
...


 and ZL =




DL

A2 DL

A2 DL

. . .
. . .


 .

Since πl of length m is positive for finite l and unique up to a multiplicative constant
with liml→∞ πl = 0, the identities (πL, πL+1, . . .)ZL = 0 and (πL+1, πL+2, . . .)ZL = 0
obtained from equations πZ = 0 and (6) together with the recursive structure of ZL

given by

ZL =

(
DL

YL ZL

)

suggest that πl+1 = απl for l ≥ L, where α ∈ (0, 1).
Corollary 2. When B0 = A1 − A2B

−1
0 A0, the stationary distribution of Q is

LG with parameter L = 0.
Next we state two lemmas, which will be used in checking for an LG distribution.
Lemma 2. If A1 is irreducible and A2e > 0, then Dl is irreducible and Cl > 0

for l ≥ 1.
Proof. From Proposition 5 we have Dl+1 = A1 +ClA0, where Cl = −A2D

−1
l ≥ 0

and l ≥ 0. Since A0 ≥ 0 by definition, we obtain ClA0 ≥ 0. Besides, A1 has non-
negative off-diagonal elements and is assumed to be irreducible. Hence, its sum with
the nonnegative ClA0 will not change the irreducibility, thereby implying irreducible
Dl+1 for l ≥ 0. Alternatively, Dl, l ≥ 1, is irreducible. That −Dl is a nonsingular M-
matrix from Proposition 5, together with the fact it is irreducible, implies −D−1

l > 0
for l ≥ 1 [3, p. 141]. Since A2 ≥ 0 and is assumed to have a nonzero in each row, its
product with −D−1

l is positive. Hence, Cl > 0 for l ≥ 1.
Lemma 3. If eTA0 > 0, A2e > 0, and DL is irreducible for some finite nonnega-

tive integer L, then Dl is irreducible and Cl > 0 for l ≥ L.
Proof. When DL is irreducible and A2 has a nonzero in each row, we have CL > 0

as in the proof of Lemma 1. Since A0 ≥ 0 and is assumed to have a nonzero in each
column, we have CLA0 > 0, thereby implying an irreducible DL+1. The same circle
of arguments may be used to show that Cl > 0 and Dl+1 is irreducible for l > L.

The next theorem states another condition under which one has an LG distri-
bution.

Theorem 2. Let L be the smallest finite nonnegative integer for which Cl is
irreducible and ρ(Cl) = ρ(Cl+1), where l ≥ L. Then the stationary distribution of Q
is LG with parameter L.
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288 TUĞRUL DAYAR AND FRANCK QUESSETTE

Proof. From Proposition 5 we have Cl ≥ 0 for l ≥ 0. If Cl, l ≥ L, is irreducible,
then by the Perron–Frobenius theorem Cl has ρ(Cl) > 0 as a simple eigenvalue and a
corresponding positive left-hand eigenvector. There are no other linearly independent
positive left-hand eigenvectors of Cl [10, p. 673]. From Proposition 5 we also have
πl = πl+1Cl and πl > 0 with liml→∞ πl = 0. Multiplying both sides of πl = πl+1Cl by
ρ(Cl), we obtain ρ(Cl)πl = (ρ(Cl)πl+1)Cl. Since ρ(Cl) is a simple eigenvalue of Cl for
l ≥ L, we must have πl as its corresponding positive left-hand eigenvector. Therefore,
it must also be that πl = ρ(Cl)πl+1 for l ≥ L. Since ρ(Cl) = ρ(Cl+1) for l ≥ L, we
have πl = ρ(CL)πl+1, or πl+1 = (1/ρ(CL))πl for l ≥ L. Consequently, Q has an LG
distribution with parameter L.

4.2. Computing the LG distribution. The next theorem gives the value of
α in (3) and indicates how πL can be computed up to a multiplicative constant when
one has an LG distribution with parameter L.

Theorem 3. If the stationary distribution of Q is LG with parameter L, then
ρ(CL)πL = πLCL, where α = 1/ρ(CL) and πL > 0 in (3).

Proof. Since Q has an LG distribution with parameter L, from (3) we have
πL+1 = απL, where α ∈ (0, 1), and πL > 0 and πL+1 > 0 with liml→∞ πl = 0. That is,
for finite L, πL+1 is a positive multiple of πL. Furthermore, from Proposition 5 we have
πL = πL+1CL, where CL ≥ 0. Since πL+1 is a positive multiple of πL, πL is clearly
a positive left-hand eigenvector of CL and therefore corresponds to the eigenvalue
ρ(CL) [3, p. 28]. Combining the two statements, we obtain ρ(CL)πL = πLCL, where
α = 1/ρ(CL) and πL > 0.

Corollary 3. When the stationary distribution of Q is LG with parameter less
than or equal to L, where L > 0, if ρ(CL) 
= ρ(CL−1), then the parameter is L;
otherwise the parameter is less than or equal to L− 1.

5. Examples revisited. In this section, we demonstrate the results of the pre-
vious section using the three examples introduced in section 3.

5.1. Example 1. For the first example in section 2, D−1
l , l ≥ 0, is a full matrix,

and we have experimentally shown that Dl+1 = Dl as l approaches infinity. For the
particular case of m = 2, we have

B−1
0 =

−1

λ1(d− µ1)

(
λ1 + µ2 λ2

µ2 λ1 + λ2

)
and C0 = −A2B

−1
0 = −µ1B

−1
0 ,

where d = λ1 + λ2 + µ1 + µ2. The correction to A1 is given by C0A0 = −λ1µ1B
−1
0 ,

and therefore

D1 = A1 + C0A0 =

(
−(d− µ2) + µ1(λ1+µ2)

d−µ1
λ2 + λ2µ1

d−µ1

µ2 + µ1µ2

d−µ1
−(d− λ2) + µ1(λ1+λ2)

d−µ1

)

= B0.

In a similar manner one can show that Dl+1 
= Dl for finite values of l. Hence,
Theorem 1 does not apply. However, Lemma 3 applies since A0 and A2 are of full-
rank and D0 is irreducible, implying irreducible Cl for l ≥ 0. Consequently, there
is reason to guess that the QBD MC has an LG distribution with parameter L = 0
from Theorem 2 and to compute the eigenvalue-eigenvector pair (ρ(C0),π0) using
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Theorem 3. Then the guessed solution can be verified in πQ = 0. Although this
approach will sometimes fail, it works in Example 1 and can be recommended for
small values of L.

For m = 2, it is not difficult to find, using Theorem 3, that ρ(C0) = µ1/λ1 > 1,
implying α = λ1/µ1, and

π0 = (1 − α)

(
1 − ν

1 − ν2

ν(1 − ν)

1 − ν2

)
,

where ν = λ2/µ2.

5.2. Example 2. Consider the second example in section 2, for which we have

B−1
0 =

−1

1 − 2p

(
1 1
2p 1

)
and C0 = −A2B

−1
0 =

1 − p

1 − 2p

(
1 1
0 0

)
.

Note that C0 is reducible. The correction to A1 is given by C0A0 = (1 − p)e1e
T
2 , and

therefore

D1 = A1 + C0A0 =

(−1 1
2p −1

)
= B0.

Hence, in this example, Dl = D0 for l ≥ 1 from Lemma 1 due to D1 = D0. From
Corollary 2 we conclude that Example 2 has an LG distribution with parameter L = 0.

Finally, from Theorem 3 we obtain ρ(C0) = (1 − p)/(1 − 2p) > 1, implying
α = (1 − 2p)/(1 − p), and π0 = (1 − α)(1/2 1/2).

5.3. Example 3. Now consider the third example in section 3, for which we
have

B−1
0 =

−1

mλ




1 1 · · · 1
1 · · · 1

. . .
...
1


 and C0 = −A2B

−1
0 =

µ

mλ




1 1 · · · 1
1 · · · 1

. . .
...
1


 .

Note that C0 is reducible and ρ(C0) = µ/(mλ), which is not necessarily greater than
1. The correction to A1 is given by C0A0 = µeeT1 , and therefore

D1 =




−mλ mλ
µ −(mλ + µ) mλ
...

. . .
. . .

µ −(mλ + µ) mλ
µ −(mλ + µ)


 
= B0.

Noticing that D1 = A1+µeeT1 , in which the correction µeeT1 is of rank-1, the Sherman–
Morrison formula [10, p. 124] yields

D−1
1 = A−1

1 − µ
A−1

1 eeT1 A
−1
1

1 + µeT1 A
−1
1 e
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Letting γ = mλ/(mλ + µ), we obtain

A−1
1 =

−1

mλ + µ




1 γ γ2 · · · γm−1

1 γ · · · γm−2

. . .
. . .

...
1 γ

1


 , (1 + µeT1 A

−1
1 e) = γm,

µ(A−1
1 e)(eT1 A

−1
1 ) =

1

mλ + µ




1 − γm γ(1 − γm) · · · γm−1(1 − γm)
1 − γm−1 γ(1 − γm−1) · · · γm−1(1 − γm−1)

...
...

. . .
...

1 − γ γ(1 − γ) · · · γm−1(1 − γ)


 ,

and, after some algebra, C1A0 = µeeT1 . Hence, D2 = A1 + C1A0 = D1, implying
Dl = D1 for l ≥ 2 from Lemma 1. From Theorem 1 we have an LG distribution with
parameter L ≤ 1. We also remark that the two matrices C0 and C1 introduced in
Proposition 4 for QBD processes with rank-1 A0 matrices are given in this example
as C0 = −µD−1

0 and C1 = −µD−1
1 . Since ρ(C0) may be less than 1 and therefore

different than ρ(C1), from Corollary 3 we conclude Example 2 has an LG distribution
with parameter L = 1.

Regarding the computation of α, for instance, when m = 2

C0 = η

(
1 1
0 1

)
and C1 = η

(
1 + η 1
η 1

)
,

where η = µ/(2λ). Hence, we have

ρ(C1) = η

(
1 +

1

2
η +

√
η

(
1 +

1

4
η

))
.

Note that ρ(C0) 
= ρ(C1). Now, using ρ(C1)π1 = π1C1, π0 = π1C0, and π1e/(1−α) +
π0e = 1, where α = 1/ρ(C1), we obtain

π1 =

(
(ρ(C1) − η)(ρ(C1) − 1)

ρ2(C1) + η(ρ(C1) − 1)(2ρ(C1) − η)

η(ρ(C1) − 1)

ρ2(C1) + η(ρ(C1) − 1)(2ρ(C1) − η)

)

and

π0 =

(
η(ρ(C1) − η)(ρ(C1) − 1)

ρ2(C1) + η(ρ(C1) − 1)(2ρ(C1) − η)

ηρ(C1)(ρ(C1) − 1)

ρ2(C1) + η(ρ(C1) − 1)(2ρ(C1) − η)

)
.

Normally the computation would be performed numerically for the given param-
eters of the problem. For m ≥ 3, we would first compute C0 and C1. Then we would
obtain the eigenvalue-eigenvector pair (ρ(C1), π1) from ρ(C1)π1 = π1C1 (see Theorem
3). Next we would compute π0 = π1C0. Finally we would normalize π0 and π1 with
π1e/(1 − α) + π0e.

6. Conclusion. This paper introduces necessary and sufficient conditions for a
homogeneous continuous-time quasi-birth-and-death (QBD) Markov chain (MC) to
possess level-geometric (LG) stationary distribution. Furthermore, it discusses how
an LG distribution can be computed when it exists. Results that utilize the matrices
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A0, A1, A2, and B0 are given, showing how one can easily check for and compute
an LG distribution with parameter L ≤ 1. The results are elaborated through three
examples. Examples 2 and 3, which have been used in the literature as test cases, are
shown to possess LG distributions, respectively, with parameters L = 0 and L = 1.
Since the matrices A0, A1, A2, and B0 that arise in applications are usually sparse,
the results developed in this paper may be used before resorting to quadratically
convergent algorithms to compute the rate matrix, R.
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