783 research outputs found

    Shaded Tangles for the Design and Verification of Quantum Programs (Extended Abstract)

    Full text link
    We give a scheme for interpreting shaded tangles as quantum programs, with the property that isotopic tangles yield equivalent programs. We analyze many known quantum programs in this way -- including entanglement manipulation and error correction -- and in each case present a fully-topological formal verification, yielding in several cases substantial new insight into how the program works. We also use our methods to identify several new or generalized procedures.Comment: In Proceedings QPL 2017, arXiv:1802.0973

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    About the Dedekind psi function in Pauli graphs

    Full text link
    We study the commutation structure within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. The simplest illustrative examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems. It is shown how the sum of divisor function σ(q)\sigma(q) and the Dedekind psi function ψ(q)=qpq(1+1/p)\psi(q)=q \prod_{p|q} (1+1/p) enter into the theory for counting the number of maximal commuting sets of the qudit system. In the case of a multiple qudit system (with q=pmq=p^m and pp a prime), the arithmetical functions σ(p2n1)\sigma(p^{2n-1}) and ψ(p2n1)\psi(p^{2n-1}) count the cardinality of the symplectic polar space W2n1(p)W_{2n-1}(p) that endows the commutation structure and its punctured counterpart, respectively. Symmetry properties of the Pauli graphs attached to these structures are investigated in detail and several illustrative examples are provided.Comment: Proceedings of Quantum Optics V, Cozumel to appear in Revista Mexicana de Fisic

    Layered Quantum Key Distribution

    Get PDF
    We introduce a family of QKD protocols for distributing shared random keys within a network of nn users. The advantage of these protocols is that any possible key structure needed within the network, including broadcast keys shared among subsets of users, can be implemented by using a particular multi-partite high-dimensional quantum state. This approach is more efficient in the number of quantum channel uses than conventional quantum key distribution using bipartite links. Additionally, multi-partite high-dimensional quantum states are becoming readily available in quantum photonic labs, making the proposed protocols implementable using current technology.Comment: 11 pages, 5 figures. In version 2 we extended section 4 about the dimension-rate trade-off and corrected minor error

    Depicting qudit quantum mechanics and mutually unbiased qudit theories

    Full text link
    We generalize the ZX calculus to quantum systems of dimension higher than two. The resulting calculus is sound and universal for quantum mechanics. We define the notion of a mutually unbiased qudit theory and study two particular instances of these theories in detail: qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits. The calculus allows us to analyze the structure of qudit stabilizer quantum mechanics and provides a geometrical picture of qudit stabilizer theory using D-toruses, which generalizes the Bloch sphere picture for qubit stabilizer quantum mechanics. We also use our framework to describe generalizations of Spekkens toy theory to higher dimensional systems. This gives a novel proof that qudit stabilizer quantum mechanics and Spekkens-Schreiber toy theory for dits are operationally equivalent in three dimensions. The qudit pictorial calculus is a useful tool to study quantum foundations, understand the relationship between qubit and qudit quantum mechanics, and provide a novel, high level description of quantum information protocols.Comment: In Proceedings QPL 2014, arXiv:1412.810

    Discrete Wigner Function Derivation of the Aaronson-Gottesman Tableau Algorithm

    Full text link
    The Gottesman-Knill theorem established that stabilizer states and operations can be efficiently simulated classically. For qudits with dimension three and greater, stabilizer states and Clifford operations have been found to correspond to positive discrete Wigner functions and dynamics. We present a discrete Wigner function-based simulation algorithm for odd-dd qudits that has the same time and space complexity as the Aaronson-Gottesman algorithm. We show that the efficiency of both algorithms is due to the harmonic evolution in the symplectic structure of discrete phase space. The differences between the Wigner function algorithm and Aaronson-Gottesman are likely due only to the fact that the Weyl-Heisenberg group is not in SU(d)SU(d) for d=2d=2 and that qubits have state-independent contextuality. This may provide a guide for extending the discrete Wigner function approach to qubits

    Anyonic entanglement renormalization

    Get PDF
    We introduce a family of variational ansatz states for chains of anyons which optimally exploits the structure of the anyonic Hilbert space. This ansatz is the natural analog of the multi-scale entanglement renormalization ansatz for spin chains. In particular, it has the same interpretation as a coarse-graining procedure and is expected to accurately describe critical systems with algebraically decaying correlations. We numerically investigate the validity of this ansatz using the anyonic golden chain and its relatives as a testbed. This demonstrates the power of entanglement renormalization in a setting with non-abelian exchange statistics, extending previous work on qudits, bosons and fermions in two dimensions.Comment: 19 pages, 10 figures, v2: extended, updated to match published versio
    corecore