research

About the Dedekind psi function in Pauli graphs

Abstract

We study the commutation structure within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. The simplest illustrative examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems. It is shown how the sum of divisor function σ(q)\sigma(q) and the Dedekind psi function ψ(q)=qpq(1+1/p)\psi(q)=q \prod_{p|q} (1+1/p) enter into the theory for counting the number of maximal commuting sets of the qudit system. In the case of a multiple qudit system (with q=pmq=p^m and pp a prime), the arithmetical functions σ(p2n1)\sigma(p^{2n-1}) and ψ(p2n1)\psi(p^{2n-1}) count the cardinality of the symplectic polar space W2n1(p)W_{2n-1}(p) that endows the commutation structure and its punctured counterpart, respectively. Symmetry properties of the Pauli graphs attached to these structures are investigated in detail and several illustrative examples are provided.Comment: Proceedings of Quantum Optics V, Cozumel to appear in Revista Mexicana de Fisic

    Similar works