967 research outputs found

    Betting on the Outcomes of Measurements: A Bayesian Theory of Quantum Probability

    Full text link
    We develop a systematic approach to quantum probability as a theory of rational betting in quantum gambles. In these games of chance the agent is betting in advance on the outcomes of several (finitely many) incompatible measurements. One of the measurements is subsequently chosen and performed and the money placed on the other measurements is returned to the agent. We show how the rules of rational betting imply all the interesting features of quantum probability, even in such finite gambles. These include the uncertainty principle and the violation of Bell's inequality among others. Quantum gambles are closely related to quantum logic and provide a new semantics to it. We conclude with a philosophical discussion on the interpretation of quantum mechanics.Comment: 21 pages, 2 figure

    Quantum Tokens for Digital Signatures

    Get PDF
    The fisherman caught a quantum fish. "Fisherman, please let me go", begged the fish, "and I will grant you three wishes". The fisherman agreed. The fish gave the fisherman a quantum computer, three quantum signing tokens and his classical public key. The fish explained: "to sign your three wishes, use the tokenized signature scheme on this quantum computer, then show your valid signature to the king, who owes me a favor". The fisherman used one of the signing tokens to sign the document "give me a castle!" and rushed to the palace. The king executed the classical verification algorithm using the fish's public key, and since it was valid, the king complied. The fisherman's wife wanted to sign ten wishes using their two remaining signing tokens. The fisherman did not want to cheat, and secretly sailed to meet the fish. "Fish, my wife wants to sign ten more wishes". But the fish was not worried: "I have learned quantum cryptography following the previous story (The Fisherman and His Wife by the brothers Grimm). The quantum tokens are consumed during the signing. Your polynomial wife cannot even sign four wishes using the three signing tokens I gave you". "How does it work?" wondered the fisherman. "Have you heard of quantum money? These are quantum states which can be easily verified but are hard to copy. This tokenized quantum signature scheme extends Aaronson and Christiano's quantum money scheme, which is why the signing tokens cannot be copied". "Does your scheme have additional fancy properties?" the fisherman asked. "Yes, the scheme has other security guarantees: revocability, testability and everlasting security. Furthermore, if you're at sea and your quantum phone has only classical reception, you can use this scheme to transfer the value of the quantum money to shore", said the fish, and swam away.Comment: Added illustration of the abstract to the ancillary file

    Quantum mechanics as a theory of probability

    Get PDF
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". We apply the approach to the analysis of entanglement, Bell inequalities, and the quantum theory of macroscopic objects. We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.Comment: 37 pages, 3 figures. Forthcoming in a Festschrift for Jeffrey Bub, ed. W. Demopoulos and the author, Springer (Kluwer): University of Western Ontario Series in Philosophy of Scienc

    On the hardness of the hidden subspaces problem with and without noise. Cryptanalysis of Aaronson-Christiano’s quantum money scheme

    Get PDF
    [ES] El boom de internet ha marcado el comienzo de la era digital y ésta ha traído consigo un desarrollo espectacular de las tecnologías de la información y de las comunicaciones, entre las que la criptografía es la reina. La criptografía de clave pública actual está basada principalmente en dos problemas que la comunidad criptográfica asume como difíciles: la factorización y el logaritmo discreto. Sin embargo, si se llegase a construir un computador cuántico lo suficientemente potente, esta dificultad no sería tal. Así pues, la computación cuántica pondría en un grave aprieto a la criptografía moderna y, puesto que la trayectoria reciente del campo sugiere que ésta podría convertirse en una realidad en un futuro no muy lejano, la comunidad criptográfica ha comenzado a explorar otras opciones para estar lista en caso de que se logre construir un computador cuántico eficiente. Esto ha dado un im- pulso a lo que se conoce como criptografía post-cuántica, aquella cuya dificultad no se vería afectada por este nuevo paradigma de computación y que está basada en los llamados problemas resistentes a la computación cuántica. La criptografía post-cuántica ha suscitado mucho interés recientemente y actualmente está en proceso de estandarización, por lo que en el momento de iniciar esta tesis resultaba relevante estudiar problemas supuestamente resistentes al computador cuántico. La parte central de esta tesis es el análisis de la dificultad del problema de los subespacios ocultos (HSP por sus siglas en inglés) y del problema de los subespacios ocultos con ruido (NHSP), dos problemas resistentes al computador cuántico según sus autores. Además de la relevancia que su supuesta resistencia a la computación cuántica les confiere, estos dos problemas son también importantes porque en su dificultad se sustenta la seguridad de las dos versiones del primer esquema de dinero cuántico de clave pública que cuenta con una prueba de seguridad. Este primer esquema es el de Aaronson-Christiano, que implementa dinero cuántico — un tipo de dinero que explota las leyes de la mecánica cuántica para crear dinero infalsificable — que cualquiera puede verificar. Los resultados obtenidos acerca de la dificultad del HSP y del NHSP tienen un impacto directo sobre la seguridad del esquema de Aaronson-Christiano, lo cual nos motivó a centrar esta tesis en estos dos problemas. El Capítulo 3 contiene nuestros resultados acerca del problema de los subespacios ocultos y está fundamentalmente basado en nuestro trabajo [Conde Pena et al.,2015]. Los autores del HSP lo definieron originalmente sobre el cuerpo binario, pero nosotros extendemos la definición a cualquier otro cuerpo finito de orden primo, siempre considerando que la instanciación es la que los autores proponen. Después de modelar el HSP con un sistema de ecuaciones con buenas propiedades, usamos técnicas de criptoanálisis algebraico para explorar el sistema en profundidad. Para el HSP sobre cualquier cuerpo que no sea el binario diseñamos un algoritmo que resuelve de manera eficiente instancias que satisfacen una cierta condición. Utilizando técnicas distintas, construimos un algoritmo heurístico, sustentado por argumentos teóricos, que resuelve eficientemente instancias del HSP sobre el cuerpo binario. Ambos algo-ritmos comprometen la dificultad del HSP siempre que las instancias del problema sean escogidas como Aaronson-Christiano proponen. Como consecuencia, nuestros algoritmos vulneran la seguridad de la versión del esquema sin ruido. El capítulo 4 contiene nuestros resultados acerca del problema de los subespacios ocultos con ruido y está fundamentalmente basado en nuestro trabajo [Conde Pena et al., 2018]. Al igual que con el HSP, extendemos la definición del NHSP a cualquier otro cuerpo de orden primo y consideramos instancias generadas como especifi- can Aaronson-Christiano. Mostramos que el NHSP se puede reducir al HSP sobre cualquier cuerpo primo que no sea el binario para ciertas instancias, mientras que el NHSP sobre el cuerpo binario se puede resolver con una probabilidad mayor de la asumida por los autores en la conjetura sobre la que la seguridad de su esquema con ruido se sustenta. Aunque nuestros resultados se obtienen desde un punto de vista puramente no cuántico, durante el desarrollo de esta tesis otro autor demostró que existe una reducción cuántica del NHSP al HSP también en el caso binario. Por tanto, la dificultad del NHSP y la seguridad del esquema de Aaronson-Christiano con ruido se han visto comprometidas por nuestros descubrimientos acerca del HSP

    qBitcoin: A Peer-to-Peer Quantum Cash System

    Full text link
    A decentralized online quantum cash system, called qBitcoin, is given. We design the system which has great benefits of quantization in the following sense. Firstly, quantum teleportation technology is used for coin transaction, which prevents from the owner of the coin keeping the original coin data even after sending the coin to another. This was a main problem in a classical circuit and a blockchain was introduced to solve this issue. In qBitcoin, the double-spending problem never happens and its security is guaranteed theoretically by virtue of quantum information theory. Making a block is time consuming and the system of qBitcoin is based on a quantum chain, instead of blocks. Therefore a payment can be completed much faster than Bitcoin. Moreover we employ quantum digital signature so that it naturally inherits properties of peer-to-peer (P2P) cash system as originally proposed in Bitcoin.Comment: 11 pages, 2 figure

    Quantum Lightning Never Strikes the Same State Twice

    Get PDF
    Public key quantum money can be seen as a version of the quantum no-cloning theorem that holds even when the quantum states can be verified by the adversary. In this work, investigate quantum lightning, a formalization of "collision-free quantum money" defined by Lutomirski et al. [ICS'10], where no-cloning holds even when the adversary herself generates the quantum state to be cloned. We then study quantum money and quantum lightning, showing the following results: - We demonstrate the usefulness of quantum lightning by showing several potential applications, such as generating random strings with a proof of entropy, to completely decentralized cryptocurrency without a block-chain, where transactions is instant and local. - We give win-win results for quantum money/lightning, showing that either signatures/hash functions/commitment schemes meet very strong recently proposed notions of security, or they yield quantum money or lightning. - We construct quantum lightning under the assumed multi-collision resistance of random degree-2 systems of polynomials. - We show that instantiating the quantum money scheme of Aaronson and Christiano [STOC'12] with indistinguishability obfuscation that is secure against quantum computers yields a secure quantum money schem

    Shadow Tomography of Quantum States

    Full text link
    We introduce the problem of *shadow tomography*: given an unknown DD-dimensional quantum mixed state ρ\rho, as well as known two-outcome measurements E1,,EME_{1},\ldots,E_{M}, estimate the probability that EiE_{i} accepts ρ\rho, to within additive error ε\varepsilon, for each of the MM measurements. How many copies of ρ\rho are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O~(ε4log4MlogD)\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right) copies. This means, for example, that we can learn the behavior of an arbitrary nn-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only nO(1)n^{O\left( 1\right)} copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brand\~ao et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.Comment: 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension
    corecore