2,706 research outputs found

    Quantum cryptography with an ideal local relay

    Get PDF
    We consider two remote parties connected to a relay by two quantum channels. To generate a secret key, they transmit coherent states to the relay, where the states are subject to a continuous-variable (CV) Bell detection. We study the ideal case where Alice's channel is lossless, i.e., the relay is locally situated in her lab and the Bell detection is performed with unit efficiency. This configuration allows us to explore the optimal performances achievable by CV measurement-device-independent (MDI) quantum key distribution (QKD). This corresponds to the limit of a trusted local relay, where the detection loss can be re-scaled. Our theoretical analysis is confirmed by an experimental simulation where 10^-4 secret bits per use can potentially be distributed at 170km assuming ideal reconciliation.Comment: in Proceedings of the SPIE Security + Defence 2015 conference on Quantum Information Science and Technology, Toulouse, France (21-24 September 2015) - Paper 9648-4

    Measurement-device-independent quantum key distribution over untrustful metropolitan network

    Full text link
    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure

    The Security of Simplified Trusted Relays

    Get PDF
    This thesis examines the security of performing quantum key distribution (QKD) with a simplified trusted relay (STR). The protocol carries out the quantum phase of a conventional trusted relay, however, reduces the required complexity of the nodes by carrying out an altered classical phase. Rather than announcing the parity of the final keys, the simplified trusted relay announces the parity of the keys before error correction and privacy amplification. As a result, the majority of the post-processing is left to the end users. Specifically, we examine the security of an STR protocol which carries out the quantum phase of the BB84 protocol. Through two different methods, we derive qubit key rates. For the first method, we require that the basis choice is equally weighted. Furthermore, we limit the relay to a single node. This proof has the benefit that it easily generalizes to an alternate protocol where a node may generate error correcting information. In the second security proof, we derive a key rate for an arbitrary number of nodes with an arbitrary basis weighting. We further extend our analysis to realistic scenarios in which the legitimate parties use weak coherent pulses to transmit signal states over a lossy channel. We provide a framework for generalizing decoy state methods to STR protocols

    Quantum communication networks with optical vortices

    Full text link
    Quantum communications bring a paradigm change in internet security by using quantum resources to establish secure keys between parties. Present-day quantum communications networks are mainly point-to-point and use trusted nodes and key management systems to relay the keys. Future quantum networks, including the quantum internet, will have complex topologies in which groups of users are connected and communicate with each-other. Here we investigate several architectures for quantum communication networks. We show that photonic orbital angular momentum (OAM) can be used to route quantum information between different nodes. Starting from a simple, point-to-point network, we will gradually develop more complex architectures: point-to-multipoint, fully-connected and entanglement-distribution networks. As a particularly important result, we show that an nn-node, fully-connected network can be constructed with a single OAM sorter and n−1n-1 OAM values. Our results pave the way to construct complex quantum communication networks with minimal resources.Comment: 10 pages, 9 figure

    Metropolitan all-pass and inter-city quantum communication network

    Full text link
    We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60km.Comment: 9 pages, 2 figures, 2 table

    Experimental measurement-device-independent quantum digital signatures

    Get PDF
    The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-Theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario
    • …
    corecore