9,544 research outputs found

    Fermionic Networks: Modeling Adaptive Complex Networks with Fermionic Gases

    Full text link
    We study the structure of Fermionic networks, i.e., a model of networks based on the behavior of fermionic gases, and we analyze dynamical processes over them. In this model, particle dynamics have been mapped to the domain of networks, hence a parameter representing the temperature controls the evolution of the system. In doing so, it is possible to generate adaptive networks, i.e., networks whose structure varies over time. As shown in previous works, networks generated by quantum statistics can undergo critical phenomena as phase transitions and, moreover, they can be considered as thermodynamic systems. In this study, we analyze Fermionic networks and opinion dynamics processes over them, framing this network model as a computational model useful to represent complex and adaptive systems. Results highlight that a strong relation holds between the gas temperature and the structure of the achieved networks. Notably, both the degree distribution and the assortativity vary as the temperature varies, hence we can state that fermionic networks behave as adaptive networks. On the other hand, it is worth to highlight that we did not find relation between outcomes of opinion dynamics processes and the gas temperature. Therefore, although the latter plays a fundamental role in gas dynamics, on the network domain its importance is related only to structural properties of fermionic networks.Comment: 19 pages, 5 figure

    Ring Exchange and Phase Separation in the Two-dimensional Boson Hubbard model

    Full text link
    We present Quantum Monte Carlo simulations of the soft-core bosonic Hubbard model with a ring exchange term K. For values of K which exceed roughly half the on-site repulsion U, the density is a non-monotonic function of the chemical potential, indicating that the system has a tendency to phase separate. This behavior is confirmed by an examination of the density-density structure factor and real space images of the boson configurations. Adding a near-neighbor repulsion can compete with phase separation, but still does not give rise to a stable normal Bose liquid.Comment: 12 pages, 23 figure

    Gaussian Networks Generated by Random Walks

    Full text link
    We propose a random walks based model to generate complex networks. Many authors studied and developed different methods and tools to analyze complex networks by random walk processes. Just to cite a few, random walks have been adopted to perform community detection, exploration tasks and to study temporal networks. Moreover, they have been used also to generate scale-free networks. In this work, we define a random walker that plays the role of "edges-generator". In particular, the random walker generates new connections and uses these ones to visit each node of a network. As result, the proposed model allows to achieve networks provided with a Gaussian degree distribution, and moreover, some features as the clustering coefficient and the assortativity show a critical behavior. Finally, we performed numerical simulations to study the behavior and the properties of the cited model.Comment: 12 pages, 6 figure

    Unsupervised landmark analysis for jump detection in molecular dynamics simulations

    Full text link
    Molecular dynamics is a versatile and powerful method to study diffusion in solid-state ionic conductors, requiring minimal prior knowledge of equilibrium or transition states of the system's free energy surface. However, the analysis of trajectories for relevant but rare events, such as a jump of the diffusing mobile ion, is still rather cumbersome, requiring prior knowledge of the diffusive process in order to get meaningful results. In this work, we present a novel approach to detect the relevant events in a diffusive system without assuming prior information regarding the underlying process. We start from a projection of the atomic coordinates into a landmark basis to identify the dominant features in a mobile ion's environment. Subsequent clustering in landmark space enables a discretization of any trajectory into a sequence of distinct states. As a final step, the use of the smooth overlap of atomic positions descriptor allows distinguishing between different environments in a straightforward way. We apply this algorithm to ten Li-ionic systems and conduct in-depth analyses of cubic Li7_{7}La3_{3}Zr2_{2}O12_{12}, tetragonal Li10_{10}GeP2_{2}S12_{12}, and the β\beta-eucryptite LiAlSiO4_{4}. We compare our results to existing methods, underscoring strong points, weaknesses, and insights into the diffusive behavior of the ionic conduction in the materials investigated

    Clustering and the Three-Point Function

    Full text link
    We develop analytical methods for computing the structure constant for three heavy operators, starting from the recently proposed hexagon approach. Such a structure constant is a semiclassical object, with the scale set by the inverse length of the operators playing the role of the Planck constant. We reformulate the hexagon expansion in terms of multiple contour integrals and recast it as a sum over clusters generated by the residues of the measure of integration. We test the method on two examples. First, we compute the asymptotic three-point function of heavy fields at any coupling and show the result in the semiclassical limit matches both the string theory computation at strong coupling and the tree-level results obtained before. Second, in the case of one non-BPS and two BPS operators at strong coupling we sum up all wrapping corrections associated with the opposite bridge to the non-trivial operator, or the "bottom" mirror channel. We also give an alternative interpretation of the results in terms of a gas of fermions and show that they can be expressed compactly as an operator-valued super-determinant.Comment: 52 pages + a few appendices; v2 typos correcte

    Clustering of exceptional points and dynamical phase transitions

    Full text link
    The eigenvalues of a non-Hermitian Hamilton operator are complex and provide not only the energies but also the lifetimes of the states of the system. They show a non-analytical behavior at singular (exceptional) points (EPs). The eigenfunctions are biorthogonal, in contrast to the orthogonal eigenfunctions of a Hermitian operator. A quantitative measure for the ratio between biorthogonality and orthogonality is the phase rigidity of the wavefunctions. At and near an EP, the phase rigidity takes its minimum value. The lifetimes of two nearby eigenstates of a quantum system bifurcate under the influence of an EP. When the parameters are tuned to the point of maximum width bifurcation, the phase rigidity suddenly increases up to its maximum value. This means that the eigenfunctions become almost orthogonal at this point. This unexpected result is very robust as shown by numerical results for different classes of systems. Physically, it causes an irreversible stabilization of the system by creating local structures that can be described well by a Hermitian Hamilton operator. Interesting non-trivial features of open quantum systems appear in the parameter range in which a clustering of EPs causes a dynamical phase transition.Comment: A few improvements; 2 references added; 28 pages; 7 figure

    Simulating and detecting artificial magnetic fields in trapped atoms

    Full text link
    A Bose-Einstein condensate exhibiting a nontrivial phase induces an artificial magnetic field in immersed impurity atoms trapped in a stationary, ring-shaped optical lattice. We present an effective Hamiltonian for the impurities for two condensate setups: the condensate in a rotating ring and in an excited rotational state in a stationary ring. We use Bogoliubov theory to derive analytical formulas for the induced artificial magnetic field and the hopping amplitude in the limit of low condensate temperature where the impurity dynamics is coherent. As methods for observing the artificial magnetic field we discuss time of flight imaging and mass current measurements. Moreover, we compare the analytical results of the effective model to numerical results of a corresponding two-species Bose-Hubbard model. We also study numerically the clustering properties of the impurities and the quantum chaotic behavior of the two-species Bose-Hubbard model.Comment: 14 pages, 9 figures. Published versio
    corecore