299 research outputs found

    Quantum Information Transmission over a Partially Degradable Channel

    Get PDF
    We investigate a quantum coding for quantum communication over a PD (partially degradable) degradable quantum channel. For a PD channel, the degraded environment state can be expressed from the channel output state up to a degrading map. PD channels can be restricted to the set of optical channels which allows for the parties to exploit the benefits in experimental quantum communications. We show that for a PD channel, the partial degradability property leads to higher quantum data rates in comparison to those of a degradable channel. The PD property is particular convenient for quantum communications and allows one to implement the experimental quantum protocols with higher performance. We define a coding scheme for PD-channels and give the achievable rates of quantum communication.Comment: 7 pages, 2 figures, Journal-ref: IEEE Acces

    Quantum information transmission through a qubit chain with quasi-local dissipation

    Full text link
    We study quantum information transmission in a Heisenberg-XY chain where qubits are affected by quasi-local environment action and compare it with the case of local action of the environment. We find that for open boundary conditions the former situation always improves quantum state transfer process, especially for short chains. In contrast, for closed boundary conditions quasi-local environment results advantageous in the strong noise regime. When the noise strength is comparable with the XY interaction strength, the state transfer fidelity through chain of odd/even number of qubits in presence of quasi-local environment results smaller/greater than that in presence of local environment

    Aspects of multistation quantum information broadcasting

    Full text link
    We study quantum information transmission over multiparty quantum channel. In particular, we show an equivalence of different capacity notions and provide a multiletter characterization of a capacity region for a general quantum channel with kk senders and mm receivers. We point out natural generalizations to the case of two-way classical communication capacity.Comment: New title, major changes, extended, journal ref. adde

    Perturbational approach to the quantum capacity of additive Gaussian quantum channel

    Full text link
    For a quantum channel with additive Gaussian quantum noise, at the large input energy side, we prove that the one shot capacity is achieved by the thermal noise state for all Gaussian state inputs, it is also true for non-Gaussian input in the sense of first order perturbation. For a general case of nn copies input, we show that up to first order perturbation, any non-Gaussian perturbation to the product thermal state input has a less quantum information transmission rate when the input energy tend to infinitive.Comment: 5 page

    Quantum state transfer via the ferromagnetic chain in a spatially modulated field

    Full text link
    We show that a perfect quantum state transmission can be realized through a spin chain possessing a commensurate structure of energy spectrum, which is matched with the corresponding parity. As an exposition of the mirror inversion symmetry discovered by Albanese et. al (quant-ph/0405029), the parity matched the commensurability of energy spectra help us to present the novel pre-engineered spin systems for quantum information transmission. Based on the these theoretical analysis, we propose a protocol of near-perfect quantum state transfer by using a ferromagnetic Heisenberg chain with uniform coupling constant, but an external parabolic magnetic field. The numerical results shows that the initial Gaussian wave packet in this system with optimal field distribution can be reshaped near-perfectly over a longer distance.Comment: 5 pages, 2 figure

    Structured light, transmission, and scattering

    Get PDF
    Numerous theoretical and experimental studies have established the principle that beams conveying orbital angular momentum offer a rich scope for information transfer. However, it is not clear how far it is practicable to operate such a concept at the single-photon level - especially when such a beam propagates through a system in which scattering can occur. In cases where scattering leads to photon deflection, it produces losses; however in terms of the retention of information content, there should be more concern over forward scattering. Based on a quantum electrodynamical formulation of theory, this paper aims to frame and resolve the key issues. A quantum amplitude is constructed for the representation of single and multiple scattering events in the propagation an individual photon, from a suitably structured beam. The analysis identifies potential limitations of principle, undermining complete fidelity of quantum information transmission
    corecore