583 research outputs found

    Bulk Entanglement Gravity without a Boundary: Towards Finding Einstein's Equation in Hilbert Space

    Get PDF
    We consider the emergence from quantum entanglement of spacetime geometry in a bulk region. For certain classes of quantum states in an appropriately factorized Hilbert space, a spatial geometry can be defined by associating areas along codimension-one surfaces with the entanglement entropy between either side. We show how Radon transforms can be used to convert this data into a spatial metric. Under a particular set of assumptions, the time evolution of such a state traces out a four-dimensional spacetime geometry, and we argue using a modified version of Jacobson's "entanglement equilibrium" that the geometry should obey Einstein's equation in the weak-field limit. We also discuss how entanglement equilibrium is related to a generalization of the Ryu-Takayanagi formula in more general settings, and how quantum error correction can help specify the emergence map between the full quantum-gravity Hilbert space and the semiclassical limit of quantum fields propagating on a classical spacetime.Comment: 29 pages, 2 figure

    Quantum Tomography

    Get PDF
    This is the draft version of a review paper which is going to appear in "Advances in Imaging and Electron Physics"Comment: To appear in "Advances in Imaging and Electron Physics". Some figs with low resolutio

    Holography on local fields via Radon Transform

    Full text link
    We define Radon transform and its inverse on the two-dimensional anti-de Sitter space over local fields using a novel construction through a quadratic equation over the local field. We show that the holographic bulk reconstruction of quantum fields in this space can be formulated as the inverse Radon transform, generalizing the case over the reals, studied earlier.Comment: 1+15 pages LaTeX2e. 1 Figure. A few clarifying comments added. Version published in JHE
    corecore