1,867 research outputs found

    Quantum image classification using principal component analysis

    Full text link
    We present a novel quantum algorithm for classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.Comment: 9 page

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    A Brief Review on Mathematical Tools Applicable to Quantum Computing for Modelling and Optimization Problems in Engineering

    Get PDF
    Since its emergence, quantum computing has enabled a wide spectrum of new possibilities and advantages, including its efficiency in accelerating computational processes exponentially. This has directed much research towards completely novel ways of solving a wide variety of engineering problems, especially through describing quantum versions of many mathematical tools such as Fourier and Laplace transforms, differential equations, systems of linear equations, and optimization techniques, among others. Exploration and development in this direction will revolutionize the world of engineering. In this manuscript, we review the state of the art of these emerging techniques from the perspective of quantum computer development and performance optimization, with a focus on the most common mathematical tools that support engineering applications. This review focuses on the application of these mathematical tools to quantum computer development and performance improvement/optimization. It also identifies the challenges and limitations related to the exploitation of quantum computing and outlines the main opportunities for future contributions. This review aims at offering a valuable reference for researchers in fields of engineering that are likely to turn to quantum computing for solutions. Doi: 10.28991/ESJ-2023-07-01-020 Full Text: PD

    Low power JPEG2000 5/3 discrete wavelet transform algorithm and architecture

    Get PDF

    VLSI design concepts for iterative algorithms

    Get PDF
    Circuit design becomes more and more complicated, especially when the Very Large Scale Integration (VLSI) manufacturing technology node keeps shrinking down to nanoscale level. New challenges come up such as an increasing gap between the design productivity and the Moore’s Law. Leakage power becomes a major factor of the power consumption and traditional shared bus transmission is the critical bottleneck in the billion transistors Multi-Processor System–on–Chip (MPSoC) designs. These issues lead us to discuss the impact on the design of iterative algorithms. This thesis presents several strategies that satisfy various design con- straints, which can be used to explore superior solutions for the circuit design of iterative algorithms. Four selected examples of iterative al- gorithms are elaborated in this respect: hardware implementation of COordinate Rotation DIgital Computer (CORDIC) processor for sig- nal processing, configurable DCT and integer transformations based CORDIC algorithm for image/video compression, parallel Jacobi Eigen- value Decomposition (EVD) method with arbitrary iterations for com- munication, and acceleration of parallel Sparse Matrix–Vector Multipli- cation (SMVM) operations based Network–on–Chip (NoC) for solving systems of linear equations. These four applications of iterative meth- ods have been chosen since they cover a wide area of current signal processing tasks. Each method has its own unique design criteria when it comes to the direct implementation on the circuit level. Therefore, a balanced solution between various design tradeoffs is elaborated for each method. These tradeoffs are between throughput and power consumption, com- putational complexity and transformation accuracy, the number of in- ner/outer iterations and energy consumption, data structure and net- work topology. It is shown that all of these algorithms can be imple- mented on FPGA devices or as ASICs efficiently

    DCT Implementation on GPU

    Get PDF
    There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop operating systems that handle the GPU to full capacity. GPUs offer a very efficient environment for many image processing applications. This thesis explores the processing power of GPUs for digital image compression using Discrete cosine transform

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations
    corecore