161 research outputs found

    Quantum annealing with Jarzynski equality

    Full text link
    We show a practical application of the Jarzynski equality in quantum computation. Its implementation may open a way to solve combinatorial optimization problems, minimization of a real single-valued function, cost function, with many arguments. We consider to incorpolate the Jarzynski equality into quantum annealing, which is one of the generic algorithms to solve the combinatorial optimization problem. The ordinary quantum annealing suffers from non-adiabatic transitions whose rate is characterized by the minimum energy gap Δmin.\Delta_{\rm min.} of the quantum system under consideration. The quantum sweep speed is therefore restricted to be extremely slow for the achievement to obtain a solution without relevant errors. However, in our strategy shown in the present study, we find that such a difficulty would not matter.Comment: 4 pages, to appear in Phys. Rev. Let

    Nonequilibrium work on spin glasses in longitudinal and transverse fields

    Full text link
    We derive a number of exact relations between equilibrium and nonequilibrium quantities for spin glasses in external fields using the Jarzynski equality and gauge symmetry. For randomly-distributed longitudinal fields, a lower bound is established for the work done on the system in nonequilibrium processes, and identities are proven to relate equilibrium and nonequilibrium quantities. In the case of uniform transverse fields, identities are proven between physical quantities and exponentiated work done to the system at different parts of the phase diagram with the context of quantum annealing in mind. Additional relations are given, which relate the exponentiated work in quantum and simulated (classical) annealing. It is also suggested that the Jarzynski equality may serve as a guide to develop a method to perform quantum annealing under non-adiabatic conditions.Comment: 17 pages, 5 figures, submitted to JPS

    Proposal of a Checking Parameter in the Simulated Annealing Method Applied to the Spin Glass Model

    Full text link
    We propose a checking parameter utilizing the breaking of the Jarzynski equality in the simulated annealing method using the Monte Carlo method. This parameter is based on the Jarzynski equality. By using this parameter, to detect that the system is in global minima of the free energy under gradual temperature reduction is possible. Thus, by using this parameter, one is able to investigate the efficiency of annealing schedules. We apply this parameter to the +-J Ising spin glass model. The application to the Gaussian Ising spin glass model is also mentioned. We discuss that the breaking of the Jarzynski equality is induced by the system being trapped in local minima of the free energy. By performing Monte Carlo simulations of the +-J Ising spin glass model and a glassy spin model proposed by Newman and Moore, we show the efficiency of the use of this parameter.Comment: 14 pages, 2 figures. v6: this is the final versio

    Quantum fluctuation theorem to benchmark quantum annealers

    Get PDF
    Near term quantum hardware promises unprecedented computational advantage. Crucial in its development is the characterization and minimization of computational errors. We propose the use of the quantum fluctuation theorem to benchmark the performance of quantum annealers. This versatile tool provides simple means to determine whether the quantum dynamics are unital, unitary, and adiabatic, or whether the system is prone to thermal noise. Our proposal is experimentally tested on two generations of the D-Wave machine, which illustrates the sensitivity of the fluctuation theorem to the smallest aberrations from ideal annealing.Comment: 5 pages, 4 figur

    Nonequilibrium relations in spin glasses

    Full text link
    The applications of nonequilbrium relations such as the Jarzynski equality and the fluctuation theorem to spin glasses are considered. The spin glass is a basic platform where we consider an application of an approximate solver of combinatorial optimization problems, simulated annealing. We find a novel relationship between an average through a nonequilibrium process where the temperature changes as in simulated annealing and a thermal average in equilibrium with different amounts of quenched randomness. The results shown in the present study may serve as an alternative way to overcome critical slowing down in spin glasses. It means that this way may mitigate difficulties in several hard optimization problems.Comment: 4 pages, Proceeding of International Symposium on Nanoscience and Quantum Physics (nanoPHYS'09) Version 3 is the final on

    Optimization by Use of Nature in Physics Beyond Classical Simulated Annealing

    Get PDF

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths

    Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems

    Get PDF
    Characterizing the work statistics of driven complex quantum systems is generally challenging because of the exponential growth with the system size of the number of transitions involved between different energy levels. We consider the quantum work distribution associated with the driving of chaotic quantum systems described by random matrix Hamiltonians and characterize exactly the work statistics associated with a sudden quench for arbitrary temperature and system size. Knowledge of the work statistics yields the Loschmidt echo dynamics of an entangled state between two copies of the system of interest, the thermofield double state. This echo dynamics is dictated by the spectral form factor. We discuss its relation to frame potentials and its use to assess information scrambling.Comment: 11+6pp, 5 figures. v3: version accepted for publication in Quantu
    corecore