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1. Introduction

We prefer to find the most appropriate choice in daily life for convenience and efficiency.
When we go to a destination, we often use a searching program to find the fastest way,
the minimum-length path, or most-reasonable one in cost. In such a searching problem,
we mathematically design our benefit as a multivariable function (cost function) depending
on many candidates and intend to maximize it. Such a mathematical issue is called the
optimization problem. Simulated annealing (SA) is one of the generic solvers for the
optimization problem [14]. We design the lowest-energy state in a physical system, which
corresponds to the minimizer/maximizer of the cost function. The cost function to describe
the instantaneous energy of the system is called as the Hamiltonian H0(σ1, σ2, · · · , σN), where
σi is the degrees of freedom in the system and N is the number of components related with the
problem size. The typical instance of the Hamiltonian is a form of the spin glass, which is the
disordered magnetic material, since most of the optimization problems with discrete variables
can be rewritten in terms of such a physical system,

H0(σ1, σ2, · · · , σN) = − ∑
〈ij〉

Jijσiσj, (1)

where σi indicates the direction of the spin located at the site i in the magnetic material as
σi = ±1. The summation is taken over all the connected bonds (ij) through the interaction Jij.
The configuration of Jij depends on the details of the optimization problem.

Then we introduce an artificial design of stochastic dynamics governed by the master
equation.

d

dt
P(σ; t) = ∑

σ′
M(σ|σ′; t)P(σ′; t), (2)

where P(σ; t) is the probability with a specific configuration of σi simply denoted as σ at time
t. The transition matrix is written as M(σ′|σ; t), which obeys the conservation of probability

∑σ M(σ|σ′; t) = 1 and the detailed balance condition

M(σ|σ′; t)Peq(σ
′; t) = M(σ′|σ; t)Peq(σ; t). (3)
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Figure 1. Energy structure of a spin-glass system. We map the possible 2N configurations to the
one-dimensional horizontal axis for simplicity. The vertical axis represents the value of the energy for
each configuration.

Here we denote the instantaneous equilibrium distribution (Gibbs-Boltzmann distribution) as

Peq(σ; t) = exp(−β(t)E(σ; t))/Zt, (4)

where the instantaneous energy E(σ; t) is the value of the Hamiltonian H0 and Zt denotes a
normalization factor termed as the partition function. In order to satisfy these conditions, we
often use the transition matrix with Metropolis rule as

M(σ|σ′; t) = min(1, exp(−βΔE(σ|σ′; t))), (5)

where
ΔE(σ|σ′; t) = E(σ; t)− E(σ′; t), (6)

or heat-bath rule as

M(σ|σ′; t) = δ1(σ, σ′)
exp

(

− β
2 ΔE(σ|σ′; t)

)

2 cosh
(

β
2 ΔE(σ|σ′; t)

) , (7)

where

δ1(σ, σ′) = δ(2,
N

∑
i=1

(1 − σiσ
′
i )). (8)

The master equation simulates behavior of relaxation toward a specific distribution associated
with the energy of the system. If we evolve the system for a long time with a virtual
parameter β(t) being a constant β, which is the inverse temperature in context of physics,
the probability distribution converges to the equilibrium distribution. To generate lower
energy state, let us set β ≫ 1. Unfortunately, the spin-glass system in the low-temperature
often exhibits the extremely long time for equilibration of the system. The most relevant
reason is on the complicated structure of the energy of the spin-glass system as schematically
depicted in Fig. 1. There are barriers between the valleys to avoid hopping from state to
state in the low-temperature, where the energy effect is dominant. Therefore it is difficult
to reach the equilibrium distribution by a direct simulation with a constant temperature.
Instead, by tuning a virtual parameter β(t) from zero to a large number, we perform
stochastic searching while keeping to trace the instantaneous equilibrium distribution. The
mathematical guarantee to converge to the instantaneous equilibrium state by gradually
changing the inverse temperature has been proved by Geman and Geman based on
the classical inhomogenious (time-dependent) Markov chain representing nonequilibrium

42 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 2. Behavior of the instantaneous state in SA. The left panel shows the stochastic searching in SA
in the high-temperature region β ≈ 0, while the right one describes that in the low-temperature one. The
dashed curves express the structure of the energy as in Fig. 1, while the thick ones denote the probability
for realization of each configuration schematically.

processes [6]. The convergence theorem states that we reach the equilibrium distribution,
if we obey the following schedule or slower rate to change the inverse temperature as

β(t) =
1

pN
log (αt + 1) , (9)

where α is exponentially small in N and p is a constant independence of N. An intuitive
way to understand the performance of SA is as follows. The inverse temperature controls the
range of searching, roughly speaking. The instantaneous state keeps hopping from state to
state in a relatively high-temperature region as depicted in Fig. 2. By gradually decrease of
the inverse temperature, we narrow the range of searching. The lower energy state means its
realization with a higher possibility following the instantaneous equilibrium distribution as
in Fig. 2. Demand of a sufficiently slow control of the inverse temperature implies that we
need enough time to find the states with relatively lower energies by the stochastic searching
before the barrier avoids globally searching for the lower energy state.

Basically, SA is based on the behavior closely to the instantaneous equilibrium state. Therefore
we need to perform the change of the inverse temperature with a sufficiently slow control. In
order to improve the performance, in particular to shorten the necessary time, we need to
consider the protocol away from the equilibrium state, that is nonequilibrium process.

In this chapter, we show a novel direction to solve efficiently the optimization problem
by use of the nature in nonequilibrium physics. In statistical physics, the interest of
researchers in nonequilibrium dynamical behavior has increased. Among several remarkable
developments, the Jarzynski equality (JE), which is known as a generalization of the second
law of thermodynamics, might be possible to change the paradigm in optimization problem
by use of the physical nature. The Jarzynski equality relates an average over all realizations
during a predetermined nonequilibrium process with an expectation in an equilibrium state.
As seen later, the mathematical structure of JE does not depend on the schedule and the rate of
changing the external parameter. It means that, if we implement JE to solve the optimization
problem, we do not need to demand slow control of the driver of the system. The challenge of
the implementation of JE have been performed in several researchers. Although not yet have
been studied the performance in the actual application to the optimization problem, we show
the possibility of the novel method from several analyses.

43Optimization by Use of Nature in Physics Beyond Classical Simulated Annealing
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2. Population annealing

We introduce a couple of theories in nonequilibrium statistical physics in short, before we
show the actual application. They provide the supplement to make the protocol of SA faster.
The Jarzynski equality is the most important key.

2.1. Jarzynski equality

Among several recent developments in nonequilibrium statistical mechanics, we take JE as an
attempt to improve the performance of SA. The Jarzynski equality relates quantities at two
different thermal equilibrium states with those of nonequilibrium processes from t = 0 to
t = T connecting these two states as [10, 11]

〈

e−βW
〉

0→T
=

ZT

Z0
, (10)

where the partition functions appearing in the ratio on the right-hand side are for the initial
(t = 0) and final Hamiltonians (t = T). The quantity on the right-hand side can be represented
by the exponentiated difference of the free energy exp(−βΔF) between the initial and final
conditions. The brackets on the left-hand side express the nonequilibrium average over all the
instantaneous realizations of the degrees of freedom, for instance spin configurations, during
the nonequilibrium process with the following path probability defined as

P0→T({σt}) =
n−1

∏
k=0

{

eδtM(σk+1|σk;tk)
}

Peq(σ0; t0). (11)

It implies that the observations of the nonequilibrium behavior can estimate the equilibrium
quantity represented by the partition functions, that is the free energy. This equality is
regarded as a generalization of the well-known inequality, the second law of thermodynamics
〈W〉0→T ≥ ΔF, which can be reproduced by the Jensen inequality. One of the important
features is that JE holds independently of the pre-determined schedule of the nonequilibrium
process.

In order to consider the improvement of SA, let us apply the nonequilibrium process with
change of the temperature. We then have to employ the pseudo work instead of the ordinary
performed work due to the energy difference as

Y(σ; tk) = (βk+1 − βk) E(σ), (12)

where we use discrete time expressions as t0 = 0 and tn = T for simplicity and we assume
that the instantaneous energy does not depend on the time as E(σ). The Jarzynski equality
holds formally in the case with change of temperature,

〈

e−Y
〉

0→T
=

ZT

Z0
. (13)

We show a simple proof of JE for the particular dynamics in SA. Let us consider a
nonequilibrium process in a finite-time schedule governed by the master equation. The
left-hand side of JE is written as

〈

e−Y
〉

0→T
= ∑

{σk}

n−1

∏
k=0

{

e−Y(σk+1;tk)eδtM(σk+1|σk;tk)
}

Peq(σ0; t0). (14)

44 Simulated Annealing – Advances, Applications and Hybridizations
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where we use the formal solution of the master equation by the exponentiated transition
matrix. We take the first product of the above equation as,

∑
σ0

{

e−Y(σ1;t0)eδtM0(σ1|σ0;t0)
}

Peq(σ0; t0)

= Peq(σ1; t1)
Zt1

Z0
. (15)

Repetition of the above manipulation in Eq. (14) yields the quantity in the right-hand side of
JE as,

∑
σn

Peq(σn ; tn)
n−1

∏
k=0

Ztk+1

Ztk

=
ZT

Z0
. (16)

2.2. Fluctuation theorem

The Jarzynski equality is a consequence from the fluctuation theorem [2–4], which relates the
probability P0→T({σt}) with that of the inverse process PT→0({σt}) as

P0→T({σt})
PT→0({σt})

e−Y =
ZT

Z0
. (17)

This leads to the more generic result, for an observable O({σt}) depending on the
instantaneous spin configurations,

〈

O({σt})e−Y
〉

0→T
= 〈Or({σt})〉T→0

ZT

Z0
, (18)

where Or denotes the observable which depends on the backward process T → 0. The
brackets with subscript 0 → T express the average with the weight P0→T({σt}) over possible
realizations {σt}. For O = Or = 1, Eq. (18) reduces to JE.

If we choose an observable depending only on the final state, which is denoted as OT, instead
of O({σt}), Or reads an observable at the initial state in the backward process. Then 〈Or〉T→0

equals to the ordinary thermal average at the initial equilibrium state with βT represented by
〈· · · 〉βT

, and Eq. (18) leads to

〈

OTe−Y
〉

0→T
= 〈O〉βT

ZT

Z0
. (19)

By looking over the above calculations, we can understand the roll of the exponentiated
pseudo work. The resultant distribution after SA is given by P0→T({σt}). The biased
distribution with the exponentiated pseudo work, P0→T({σt}) exp(−Y) always gives the
equilibrium one. In this sense, the exponentiated pseudo work plays a roll to fill the
gap between the equilibrium distribution and the resultant one after SA. Therefore, if we
skillfully use the exponentiated pseudo work to keep the instantaneous distribution close to
the equilibrium one, we can invent the improved version of SA.

45Optimization by Use of Nature in Physics Beyond Classical Simulated Annealing
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2.3. Population annealing

We introduce an improvement of SA by use of the property of JE. Let us consider to implement
JE in numerical simulation. We parallelize the instantaneous spin configurations {σt} as
{σt}i=1,··· ,C. Each of the configuration independently will be evolved by the master equation.
We regard the exponentiated pseudo work on the left-hand side of JE, Eq. (14), as the weight
for each realization of the configuration. By computing the pseudo work for each realization
and multiplying the weight given by the exponentiated pseudo work, we simultaneously
perform the stochastic dynamics governed by the master equation. At the last stage of
repetition of the above procedure, we obtain the ratio of the partition function as in the
right-hand side of JE. In order to calculate its value, we estimate the empirical average as,
after parallel computing of the master equation,

1

C

C

∑
i=1

exp

(

−
n

∑
k=1

Y(tk; σ)

)

. (20)

While estimating the ratio of the partition functions by JE, implementation of Eq. (19) gives the
thermal average of the observable through their ratio. This is the typical implementation of JE
in a numerical simulation, which is called as population annealing (PA) [7, 9, 17] as depicted
in Fig. 3,

Figure 3. Schematic picture of the process of PA by C = 4. The size of the circles denotes the weight
given by the multiplication of the exponentiated pseudo work during PA.

We remark that, as proposed in the literatures [7, 9], we have to employ a skillful technique,
resampling, to efficiently generate the relevant copies to estimate the nonequilibrium average
and maintain the stability of the method. The population annealing with resampling method
indeed shows outstanding performance comparable to a standard technique to equilibrate
the spin-glass system known as the exchange Monte Carlo method [8]. If we successfully
generate the equilibrium distribution in the low-temperature region, we efficiently find the
lowest energy state, which corresponds to the optimal solution in context of the optimization
problem. Therefore PA is also relevant for the improvement of SA as a solver for the

46 Simulated Annealing – Advances, Applications and Hybridizations
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optimization problem. The advantage of PA is cutting the computational time compared to
SA, since PA follows the property of JE. It means that we find the optimal solution by use of
PA faster than SA.

Below, we propose an ambitious use of PA to evaluate the equilibrium property in the
low-temperature in spin glasses by use of the special symmetry [21].

2.4. Spin glass

At first we briefly review a useful analysis in several spin-glass systems, which provides a
powerful technique to discuss the possibility of PA. Let us consider a simple model of spin
glasses, the ±J Ising model, on an arbitrary lattice. The Hamiltonian is the same form as Eq.
(1) as

H = − ∑
〈ij〉

Jτijσiσj, (21)

where we extract the sign of the interaction τij following the distribution function as

P(τij) = pδ(τij − 1) + (1 − p)δ(τij + 1). (22)

The partition function, which is the most important quantity through the free energy, is
defined as

Z(K; {τij}) = ∑
{σi}

∏
〈ij〉

exp(Kτijσiσj). (23)

The free energy is then given by

− βF(K; {τij}) = log Z(K; {τij}), (24)

where the product βJ is rewritten as K. Both of the above quantities depend on the specific
configuration {τij}. In order to evaluate the physical property of spin glasses in equilibrium,
we strive the difficult task to deal with the free energy depending on the non-uniform
interactions. Instead of the direct manipulation, the averaged quantity over all the possible
configurations of {τij} may be considered based on the self-averaging property as, in the
large-limit N,

1

N
F(K; {τij}) →

1

N

[

F(K;{τij})
]

, (25)

where the square bracket denotes the average over all the combinations of {τij}
(configurational average). The self-averaging property is valid for other observables, which
can be obtained from the free energy per site like the internal energy.

2.5. Gauge transformation

Here let us define a local transformation by the simultaneous change of the interactions and
spin variables as, by the binary variables ǫi = ±1 [18, 19]

τij → ǫiǫjτij (26)

σi → ǫiσi. (27)

47Optimization by Use of Nature in Physics Beyond Classical Simulated Annealing



8 Will-be-set-by-IN-TECH

This is called as the gauge transformation. Notice that the gauge transformation does not alter
the value of the physical quantity given by the double average over τij and σi since it changes
only the order of the summations. The Hamiltonian can not change its form after the gauge
transformation since the right-hand side is evaluated as

− ∑
〈ij〉

Jτijǫiǫjǫiσiǫjσj = H, (28)

As this case, if the physical quantity is invariant under the gauge transformation (gauge
invariant), we can evaluate its exact value even for finite-dimensional spin glasses. The key
point of the analyses by the gauge transformation is on the form of the distribution function.
Before performing the gauge transformation, the distribution function can take the following
form as

P(τij) =
eKpτij

2 cosh Kp
, (29)

where exp(−2Kp) = (1 − p)/p. The gauge transformation changes this into

P(τij) =
eKpτijǫiǫj

2 cosh Kp
. (30)

Let us evaluate the internal energy by aid of the gauge transformation here. The thermal
average of the Hamiltonian is given by

〈H〉K = ∑
{σi}

1

Z(K;{τij})
H ∏

〈ij〉
exp

(

Kτijσiσj

)

(31)

= −J
d

dK
log Z(K;{τij}). (32)

We can use the self-averaging property here and thus take the configurational average as

[〈H〉K]Kp
= ∑

{τij}
∏
〈ij〉

exp(Kpτij)

2 cosh Kp
× 〈H〉K . (33)

where [· · · ]Kp
denotes the configurational average by the distribution function (29) with Kp.

Then we perform the gauge transformation, which does not change the value of the internal
energy due to gauge invariance,

[〈H〉K]Kp
= ∑

{τij}
∏
〈ij〉

exp(Kpτijǫiǫj)

2 cosh Kp
× 〈H〉K. (34)

Therefore we here take the summation over all the possible configurations of {σi} and divide
it by 2N (the number of configurations) as

[〈H〉K]Kp
=

1

2N ∑
{ǫi}

∑
{τij}

∏
〈ij〉

exp(Kpτijǫiǫj)

2 cosh Kp
× 〈H〉K. (35)

48 Simulated Annealing – Advances, Applications and Hybridizations
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We take the summation over {ǫi} in advance of that over {τij} and then find the partition
function with Kp instead of K.

[〈H〉K]Kp
=

1

2N ∑
{τij}

Z(Kp; {τij})
(2 cosh Kp)NB

× 〈H〉K. (36)

where NB is the number of bonds. Going back to the definition (31), both of the partition
functions on the denominator and numerator can be cancelled when Kp = K as

[〈H〉K]K =
−J

2N(2 cosh Kp)NB
∑
{σi}

∑
{τij}

d

dK
exp

(

Kτijσiσj

)

= −NB J tanh K. (37)

Similarly, we can evaluate the rigorous upper bound on the specific heat. The condition Kp =
K confines the special subspace in which we can perform the exact analysis for spin glasses.
This subspace is called as the Nishimori line (NL) [18, 19].

2.6. Jarzynski equality for spin glasses

By use of the gauge transformation as above introduced briefly, let us consider the application
of the relations (18) and (19) to spin glasses, namely PA for such a complicated system in a
tricky way. We analyze JE for the spin-glass model for several interesting quantities below.

2.6.1. Gauge-invariant quantities like internal energy

We apply Eq. (19) to a gauge-invariant quantity G({τij}) for the purpose of evaluation of the
equilibrium quantity in spin glasses. The configurational average for Eq. (19) yields

[

〈

GT({τij})e−Y
〉

K0→KT

]

Kp

=

[

〈G({τij})〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

. (38)

The quantity on the left-hand side is the configurational and nonequilibrium averages of the
observable G({τij}) at final stage of PA, that is after the protocol K0 → KT with the factor

e−βW . On the other hand, 〈G({τij})〉KT
on the right-hand side expresses the configurational

and thermal averages of the equilibrium state for the final Hamiltonian.

The gauge transformation σi → σiǫi, τij → τijǫiǫj (∀i, j) leads us to

[

〈G({τij})〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

= ∑
{τij}

〈G({τij})〉KT ∏〈ij〉 eKpτij ǫiǫj

(2 cosh Kp)NB

Z(KT; {τij})
Z(K0; {τij})

. (39)

All the quantities in this equation are invariant under the gauge transformation. The
summation over {ǫi} and division by 2N gives

[

〈G({τij})〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

= ∑
{τij}

〈G({τij})〉KT
Z(Kp; {τij})

2N(2 cosh Kp)NB

Z(KT; {τij})
Z(K0; {τij})

. (40)

49Optimization by Use of Nature in Physics Beyond Classical Simulated Annealing
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On the other hand, let us evaluate the quantity
[

〈G({τij})〉KT

]

Kp

. Similarly to the above

calculation, the following identity can be obtained by the gauge transformation,

[

〈G({τij})〉KT

]

Kp

= ∑
{τij}

〈G({τij})〉KT
Z(Kp; {τij})

2N(2 cosh Kp)NB
. (41)

By Setting Kp = K0 in Eq. (40) and Kp = KT in the above equation, we reach the following
nonequilibrium relation,

[

〈GT({τij})e−Y〉K0→KT

]

K0

=
[

〈G({τij})〉KT

]

KT

(

cosh KT

cosh K0

)NB

. (42)

If we set GT({τij}) = 1 in the resultant equation, the Jarzynski equality for spin glass is
obtained,

[

〈

e−Y
〉

K0→KT

]

K0

=

(

cosh KT

cosh K0

)NB

. (43)

Equation (43) leads to the lower bound on the pseudo work, using Jensen’s inequality for the
average of e−Y,

[〈Y〉K0→KT
]K0

≥ −NB log

(

cosh KT

cosh K0

)

. (44)

By substituting GT({τij}) = H into Eq. (42), we obtain

[

〈

He−βW
〉

K0→KT

]

K0

= [〈H〉KT
]KT

(

cosh KT

cosh K0

)NB

. (45)

This equation shows that the internal energy after the cooling as in SA or heating process
starting from a temperature on NL, which is in the present case K0 = Kp, is proportional to
the internal energy in equilibrium on NL corresponding to the final temperature KT = Kp

as in Fig. 4. We here assume to perform PA and take an average over all results after many
repetitions. The nonequilibrium process starts from NL (1/K0, 1/K0) and ends at the point
away from NL (1/K0, 1/KT). Notice that the ordinary procedure in PA gives the estimation
of the equilibrium quantity at the last condition as (1/K0, 1/KT). However the corresponding
internal energy is at the different point but on NL as (1/KT, 1/KT). It means that we can
obtain the equilibrium quantities in the different amount of the randomness from the initial
condition through the configurational average of the results from PA.

2.6.2. Gauge-non-invariant quantities

In statistical physics, it is important to detect the order of the instantaneous spin configuration
in the system. For instance, as in Fig. 4, there are several phases, ferromagnetic, paramagnetic
and spin-glass ones, involved in the spin-glass model. They have the characteristic quantities
to distinguish themselves, termed as the order parameter. The order parameter to identify the
phase boundary between the ferromagnetic and paramagnetic phases is the magnetization
defined as

m =
1

N

N

∑
i=1

σi (46)

50 Simulated Annealing – Advances, Applications and Hybridizations
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Figure 4. The nonequilibrium process as in SA/PA on the left-hand side as in Eq. (45) drawn as an

arrow on the phase diagram. The corresponding equilibrium state as on the right-hand side of Eq. (45) is
at the point on NL. The solid curves are the phase boundaries and the dashed line of 45o represents NL.

Therefore it is important to observe the behavior of the first momentum of spin variable in
equilibrium. For this purpose, we choose σi(T) for O in Eq. (19) and consider the possibility
of the application of PA. After the configurational average, we obtain

[

〈

σi(T)e
−Y

〉

K0→KT

]

Kp

=

[

〈σi〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

. (47)

Gauge transformation for the right-hand side in this equation yields
[

〈σi〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

= ∑
{τij}

Z(KT; {τij})
Z(K0; {τij})

〈σi〉KT
ǫi ∏

〈ij〉

eKpτij ǫiǫj

2 cosh Kp
. (48)

We again sum both sides of this equation over all the possible configurations of {ǫi} and
divide the obtained quantity by 2N to find

[

〈σi〉KT

Z(KT; {τij})
Z(K0; {τij})

]

Kp

= ∑
{τij}

Z(Kp; {τij})
2N(2 cosh Kp)NB

〈σi〉KT
〈ǫi〉Kp

Z(KT; {τij})
Z(K0; {τij})

. (49)

The following relation can also be obtained in a similar manipulation,

[〈σi〉K0
]Kp

= ∑
{τij}

Z(Kp; {τij})
2N(2 cosh Kp)NB

〈σi〉K0
〈ǫi〉Kp

. (50)

By setting Kp = K0 in Eq. (49) and Kp = KT in Eq. (50), we reach a relation
[

〈σi〉KT

Z(KT; {τij})
Z(K0; {τij})

]

K0

= [〈σi〉K0
]KT

(

cosh KT

cosh K0

)NB

. (51)
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Figure 5. Equations (52) and (53) relate equilibrium quantities at the point (1/K0, 1/KT) (the lower-left
dot) with other physical quantities estimated during the nonequilibrium process shown in the arrow. The
lower-left dot is in the spin glass phase whereas the corresponding arrow is in the ferromagnetic phase.

As a result, we obtain a nonequilibrium relation ,

[

〈σi(T)e
−Y〉K0→KT

]

K0

= [〈σi〉K0
]KT

(

cosh KT

cosh K0

)NB

. (52)

The same method yields another relation for the correlation functions to similarly measure the
magnitude of order in the system

[

〈σ0(T)σr(T)e
−Y〉K0→KT

]

K0

= [〈σ0σr〉K0
]KT

(

cosh KT

cosh K0

)NB

. (53)

The obtained relations (52) and (53) relate the equilibrium physical quantities away from NL
(the right-hand sides) with other quantities measured during the nonequilibrium process
from a point on NL to another point away from NL (the left-hand sides) as depicted in
Fig. 5. The spin-glass system in the low-temperature region exhibits the extremely slow
relaxation toward equilibrium. This feature hampers to observe the equilibrium behavior
of spin glasses. However our results imply that the configurational average of PA would
overcome the difficulty. One may attempts the heating process from NL in order to evaluate
the low-temperature property through Eqs. (52) and (53) as depicted in Fig. 5. The Jarzynski
equality holds irrespectively of the schedule to control the external field. It means that we
can investigate the low-temperature behavior for spin glasses without suffering from critical
slowing down. Unfortunately, however, the exponentiated pseudo work does not hold the
self-averaging property. It means that the sample-to-sample fluctuation between different
configurations of {τij} remains to be relevant even in a large-N system. Therefore, if we
estimate the empirical average of realizations of {τij} following the obtained equalities, we
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Figure 6. Superimposed plots of Differences between the exact value and the estimation given by PA.
The horizontal axis denotes the instantaneous temperature during PA. The vertical axis represents the
difference from the exact values given by the transfer matrix method in advance.
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Figure 7. Difference between the exact values and the empirical averages over 100 realizations. The
cross points give the deviation of the empirical averages of the exact values of ratios of the partition
functions from the exact value on the right-hand side of Eq. (43), while the tilted-cross ones represent
that of the empirical average of the estimation given by PA.

do not correctly reproduce the quantity of the right-hand side. We describe the test results for
estimation of the ratio of the partition functions as in Eq. (13) by PA for 100 realizations
of {τij} in Fig. 6. We perform PA for the ±J Ising model on the square lattice with a
linear size L = 6, and Monte-Carlo step R = 1000. The number of copies is C = 100.
The population annealing can correctly estimate the ratio of the partition functions for each
realization, but their simple average does not coincide with the quantity on the right-hand
side of Eq. (43) as in Fig. 7. Both of the results are away from the exact solutions due to
the sample-to-sample fluctuation and show nontrivial behavior depending on the linear size.
These facts imply lack of self-averaging property. Therefore, if we exploit all the above results
given by the configurational average of the exponentiated pseudo work, we have to overcome
this violation due to lack of the self-averaging property. This is one of the remaining problem
associated with this procedure with PA for spin glasses.
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3. Quantum annealing

Observant readers may begin to recognize the possibility to use physical nature to drive the
system in searching the lowest energy (ground state) instead of thermal fluctuation controlled
by the inverse temperature. We show another strategy to find the ground state recently
studied in a field of physics, quantum annealing (QA) [13].

3.1. Quantum adiabatic computation

In quantum-mechanical system, we can use a parallel way to drive all the candidates of
the desired solution in optimization problem by use of superposition. Quantum annealing
uses quantum fluctuation between superposed states to search for the ground state. One
of the successful strategies is to use the adiabatic evolution known as quantum adiabatic
computation (QAC) [5]. In QAC, as the procedure of SA, we control to gradually decrease
the strength of quantum fluctuations to drive the system. Similarly to SA, the convergence
into the optimal solution of QAC (the ground state) is also guaranteed by a mathematical
proof [15].

In QAC, we introduce a non-commutative operator to drive the system by quantum nature
in addition to the original Hamiltonian H0, which is designed to represent the optimization
problem to be solved, as

H(t) = f (t)H0 + (1 − f (t)) H1, (54)

where f (t) is assumed to be a monotonically increasing function satisfying f (0) = 0 and
f (T) = 1. For instance, f (t) = t/T, where T denotes the computation time for QAC. In order
to exemplify the explicit instance, we again assume that H0 is the spin glass Hamiltonian as

H0 = − ∑
〈ij〉

Jijσ
z
i σz

j , (55)

where σz
i is the z component of the Pauli operators defined as

σx =

(

0 1
1 0

)

, σy =

(

0 i
−i 0

)

, σz =

(

1 0
0 −1

)

. (56)

We take the computational basis of the eigenstates of the z-component of the Pauli matrix
(Ising variables) to represent the instantaneous state as |Ψ(t)〉 = |σz

1 , σz
2 , · · · , σz

N〉. The
transverse-field operator is often used as quantum fluctuations for implementing QAC for
the spin-glass model

H1 = −Γ0

N

∑
i=1

σx
i . (57)

where Γ0 is the strength of the transverse field. The whole Hamiltonian of QAC (although
widely used also for QA) thus becomes

H(t) = f (t)∑
〈ij〉

Jijσ
z
i σz

j + (1 − f (t)) Γ0

N

∑
i=1

σx
i . (58)

The quantum adiabatic computation starts from a trivial ground state of H1. In the present
case, the ground state of the transverse-field operator H1 is simply written by a uniform linear

combination as ∑{σ} |σz
1 , σz

2 , · · · , σz
N〉/

√
2

N
.
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The adiabatic theorem guarantees that the instantaneous state at time t, |Ψ(t)〉, is very close to
the instantaneous ground state for a sufficiently large T (implying slow control) as |0(t)〉, if the
instantaneous ground state |0(t)〉 is non-degenerate. The condition for |0(t)〉, 〈0(t)|Ψ(t)〉 ≈
1 − δ2(δ � 1) to hold can be written as [15]

max
∣

∣

∣
〈1(t)| dH(t)

dt |0(t)〉
∣

∣

∣

min Δ2(t)
= δ, (59)

where |1(t)〉 is the instantaneous first excited state, and Δ(t) is the energy gap between the
ground state and first excited one. The maximum and minimum should be evaluated between
0 and T. In the present case, since dH(t)/dt ∝ 1/T, the above adiabatic condition is reduced
into

T ∝
1

δminΔ2(t)
. (60)

It means that if we desire to solve the optimization problems by use of QAC, which one of the
specialized version of QA, we take the computational time proportional to the inverse square
of the energy gap. If the problem involved with the exponential closure of the energy gap for
increasing of N, QAC must take extremely long time to obtain the ground state with a high
probability [12, 25]. Interestingly, we can reproduce the convergence theorem of SA (9) from
the above adiabatic condition with recourse to a mathematical mapping of the procedure of
SA into the quantum dynamics [15, 23]. It implies that the nature of QAC can be understood
through that of SA by the mathematical mapping technique.

Below, we would provide a new paradigm to solve faster than the ordinary scheme of SA.
A fast sweep of the system yields nonequilibrium behavior. Although we have not yet
understood deeply the nonequilibrium phenomena, there are a few well-established theories
which rises to applications to the optimization problem. One possibility is PA for the quantum
system by use of JE and its alternatives [20]. Here we again employ JE to give another scheme
of QA while considering the nonequilibrium behavior.

3.2. Jarzynski equality for isolated quantum system

In order to consider the nonequilibrium behavior away from the adiabatic dynamics of QAC,
we shortly review JE for an isolated quantum system [1, 24].

To directly use JE in the protocol to find the ground state of the spin-glass Hamiltonian H0

as in Eq. (55), we prepare the dynamical quantum system following the time-dependent
Hamiltonian (58). In addition, we pick up a state from the canonical ensemble for H(0) =
H1 = −Γ0 ∑i σx

i at the initial stage of the procedure and then let it evolve following the
time-dependent Schrödinger equation. We measure the performed work in the isolated
quantum system as W = Em(T) − En(0), which is simply given by the difference between
the outputs of projective measurements of the initial and final energies. Here m and n
denote the indices of the instantaneous eigenstates as H(T)|m(T)〉 = Em(T)|m(T)〉 and
H(0)|n(0)〉 = En(0)|n(0)〉, respectively. The time-evolution operator is given by the following
unitary operator as

UT = T exp

(

i
∫ T

0
dtH(t)

)

, (61)
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where T denotes the time ordered product. Therefore the transition probability between the
initial and final stages is given as

Pm,n(0 → T) = |〈Ψm(T)|UT |Ψn(0)〉|2. (62)

The path probability for the nonequilibrium process starting from the equilibrium ensemble
is then evaluated as

Pm,n(0 → T)
exp(−βEn(0))

Z0(β; {Jij})
, (63)

where we express the instantaneous partition function for the instantaneous Hamiltonian at
each time t as Zt(β; {Jij}).
By directly evaluating the nonequilibrium average of the exponentiated work but for the
isolated system, we reach JE applicable to non-adiabatic version of QA. We define the
nonequilibrium average of the exponentiated work as

〈

e−βW
〉

QA
= ∑

m,n
e−βWPm,n(0 → T)

exp(−βEn(0))

Z0(β; {Jij})
,

which becomes the left-hand side of JE. The quantity defined here is evaluated as

〈

e−βW
〉

QA
= ∑

m,n

e−βEm(T)

Z0(β; {Jij})
Pm,n(0 → T)

= ∑
m

e−βEm(T)

Z0(β; {Jij})

=
ZT(β; {Jij})
Z0(β; {Jij})

, (64)

where we used the fact that the performed work W was a classical number and

∑
n

Pm,n(0 → T) = ∑
n
〈Ψm(T)|UT |Ψn(0)〉〈Ψn(0)|U†

T |Ψi(T)〉

= ∑
m

〈Ψm(T)|UTU†
T |Ψm(T)〉 = 1. (65)

If we measure the physical observable ÔT at the last of the nonequilibrium process, we obtain
another equation as, similarly to the classical version,

〈ÔTe−βW〉QA = 〈Ô〉β

ZT(β; {Jij})
Z0(β; {Jij})

, (66)

where the subscript on the square brackets in the right-hand side denotes the thermal average
in the last equilibrium state with the inverse temperature β. The ratio of Eqs. (64) and (66)
gives

〈ÔTe−βW〉QA

〈e−βW〉QA
= 〈Ô〉β. (67)
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The resultant equation suggests that we can estimate the thermal average under the
Hamiltonian H0 on the right-hand side through the left-hand side of JE. This fact may be useful
in the evaluation of equilibrium average, since the left-hand side is evaluated without slow
adiabatic processes. Differently from QAC, we must sweep the quantum system repeatedly
to correctly estimate the nonequilibrium average as in JE, but in short time. We propose such
a procedure as the alternative of QAC, the non-adiabatic quantum annealing (NQA) based
on the property of JE as above established. First we discuss the possibility as a solver of the
optimization problem below.

4. Non-adiabatic quantum annealing

In order to investigate the property of the ground state, we tune the inverse temperature into
a very large value β ≫ 1. The nonequilibrium average on the left-hand side of JE involves
a non-extensive quantity, the exponentiated work, whose value fluctuates significantly from
process to process. Therefore the average on the left-hand side must be calculated by many
trials of annealing processes. Thus, rare events with large values of the exponentiated work
(i.e. β|W| ≫ Γ0) would contribute to the average significantly, and we have to repeat the
annealing process very many, typically exponentially, times in order to reach the correct value
of the average. This property would be a bottleneck of the simple implementation of NQA,
instead of long time involved by the closure of the energy gap in QAC. What about PA in
the classical counter part? In order to generate the relevant contributions in PA, we use the
biased distribution with the exponentiated pseudo work through resampling technique [7, 9].
Without resampling technique, we cannot efficiently reproduce the prediction given by JE.
In this fact, if we implement the biased distribution in the quantum system, we would use
NQA without suffering from rare events. It means that we can perform NQA in order to find
the ground state in a short time with several repetitions. So far, it is the very difficult task to
realize the biased distribution in the quantum system. However it is worthwhile to consider
its possibility in the future.

4.1. Several analyses of non-adiabatic quantum annealing

Unfortunately, we have not reached any positive answers on the performance of NQA. Instead
let us here evaluate several properties in nonequilibrium process as in NQA for the particular
spin glasses. We can exactly analyze nonequilibrium behavior by combination of JE with
the gauge transformation, although there are few exact results in nonequilibrium quantum
dynamical system with many components [22].

Following the prescription of JE, let us consider a repetition of NQA starting from the
equilibrium ensemble. The initial Hamiltonian of NQA is given only by the transverse field
H(0) = H1. It turns out that the starting point of our analyses is the specialized JE to the case
for NQA as

〈e−βW〉QA =
ZT(β, {Jij})
(2 cosh βΓ0)N

. (68)

We assume that the interactions {Jij} follow the distribution function for the ±J Ising model
(22), which is better to be rewritten as

P(Jij) =
exp(βp Jij)

2 cosh βp J
, (69)
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where we do not use K = βJ for transparency, and exp(−2βp J) = (1 − p)/p.

4.2. Gauge transformation for quantum spin systems

For several special spin glasses as the ±J Ising model, the gauge transformation is available for
analyses on the dynamical property even under quantum fluctuations. The time-dependent
Hamiltonian as in Eq. (58) is invariant under the following local transformation,

σx
i → σx

i , σ
y
i → ξiσ

y
i , σz

i → ξiσ
z
i , Jij → Jijξiξ j (∀i, j), (70)

where ξi(= ±1) is called as a gauge variable. This transformation is designed to preserve the
commutation relations between different components of Pauli matrices [16].

4.3. Relationship between two different paths of NQA

Below, we reveal several properties inherent in NQA by the gauge transformation. Let us take
the configurational average of Eq. (68) over all the realizations of {Jij} for the special case with
β = β1 and βp = β2 as

[

〈e−β1W〉QA

]

β2

=

[

ZT(β1; {Jij})
(2 cosh β1Γ0)

N

]

β2

. (71)

The right-hand side is written explicitly as

[

〈e−β1W〉QA

]

β2

= ∑
{Jij}

exp
(

β2 ∑〈ij〉 Jij

)

(2 cosh β2 J)NB

ZT(β1; {Jij})
(2 cosh β1Γ0)

N
. (72)

Let us here apply the gauge transformation as introduced above. Since the time-dependent
Hamiltonian is invariant, we may sum over all possible configurations of the gauge variables
{ξi} and divide the result by 2N in order to obtain the quantity on the left-hand side,

[

〈e−β1W〉QA

]

β2

= ∑
{Jij}

ZT(β2; {Jij})ZT(β1; {Jij})
2N(2 cosh β2 J)NB (2 cosh β1Γ0)

N
. (73)

A similar quantity of the average of the exponentiated work for spin glass with the inverse
temperature β2 and the parameter for the quenched randomness β1 gives

[

〈e−β2W〉QA

]

β1

= ∑
{Jij}

ZT(β2; {Jij})ZT(β1; {Jij})
2N(2 cosh β1 J)NB (2 cosh β2Γ0)

N
. (74)

Comparing Eqs. (73) and (74), we find the following relation between two different
non-adiabatic processes,

[

〈e−β1W〉QA

]

β2

=
[

〈e−β2W〉QA

]

β1

(

cosh β1 J

cosh β2 J

)NB
(

cosh β2Γ0

cosh β1Γ0

)N

. (75)

We describe the two different paths of NQA related by this equality in Fig. 8. Setting β2 = 0
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Figure 8. Two different processes of NQA in Eq. (75). The left-hand side of Eq. (75) represents the
process toward the upper-right red dot and the right-hand side ends at the lower-left dot. Three phases
expressed by the same symbols as in Fig. 4 are separated by solid curves and the dotted line describes
NL (βp = β).

in Eq. (75), (implying p = 1/2, the symmetric distribution), we find a nontrivial relation on
the performed work during NQA

[

〈e−β1W〉QA

]

0
=

(cosh β1 J)NB

(cosh β1Γ0)N
. (76)

The symmetric distribution (β2 = 0 on the left-hand side) makes it possible to reduce the
right-hand side to the above trivial expression. It is remarkable that NQA, which involves
very complex dynamics, satisfies such a simple identity irrespective of the speed of annealing
T. The Jensen inequality for the above equality leads us to the lower bound for the performed
work as

[

〈W〉QA

]

0 ≥ − N

β
log

(

(cosh βJ)z

cosh βΓ0

)

. (77)

where z is the coordination number as z = NB/N. Here we generalize the inverse temperature
to β from the specific choice β1. This lower bound is loose, since the direct application of the
Jensen inequality to JE for NQA yields, after the configurational average with the symmetric
distribution,

[

〈W〉QA

]

0 ≥ 1

β
D(0|β)− N

β
log

(

(cosh βJ)z

cosh βΓ0

)

. (78)
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where D(β|β′) is the Kullback-Leibler divergence defined as

D(β|β′) = ∑
{Jij}

P̃β({Jij}) log
P̃β′ ({Jij})
P̃β({Jij})

(79)

Here we defined the marginal distribution for the specific configuration {Jij} summed over
all the possible gauge transformations,

P̃β({Jij}) =
1

2N ∑
{ξ i}

∏
〈ij〉

P(Jij) =
ZT(β; {Jij})

2N(2 cosh βJ)NB
. (80)

Since the Kullback-Leibler divergence does not become non-negative, the work performed by
the transverse field during a nonequilibrium process in the symmetric distribution (i.e. the
left-hand side of Eq. (78)) does not lower below the second quantity on the right-hand side of
Eq. (78), namely Eq. (77). This fact means that Eq. (77) is a loose lower bound.

4.4. Exact relations involving inverse statistics

Beyond the above results, we can perform further non-trivial analyses for the nonequilibrium
process in the special conditions. Let us next take the configurational average of the inverse
of JE, Eq. (68), as

[

1

〈e−βW〉QA

]

βp

=

[

(2 cosh βΓ0)
N

ZT(β; {Jij})

]

βp

. (81)

The application of the gauge transformation to the right-hand side yields

[

1

〈e−βW〉QA

]

βp

= ∑
{Jij}

exp
(

βp ∑〈ij〉 Jijξiξ j

)

(2 cosh βp J)NB

(2 cosh βΓ0)
N

ZT(β; {Jij})
. (82)

Summation of the right-hand side over all the possible configurations of {ξ i} and division of
the result by 2N give

[

1

〈e−βW〉QA

]

βp

= ∑
{Jij}

ZT(βp; {Jij})
2N(2 cosh βp J)NB

(2 cosh βΓ0)
N

ZT(β; {Jij})
. (83)

This equation reduces to, by setting βp = β, namely on the Nishimori line,

[

1

〈e−βW〉QA

]

β

=
(cosh βΓ0)

N

(cosh βJ)NB
. (84)

Comparison of Eqs. (76) and (84) gives

[

〈e−βW〉QA

]

0
=

⎛

⎝

[

1

〈e−βW〉QA

]

β

⎞



−1

. (85)
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Figure 9. Two different nonequilibrium processes in NQA through Eq. (85). The same symbols are
depicted as in Fig. 4. The blue circle represents the determination of the process on the right-hand side of
Eq. (85), whereas the red one is for the left-hand side.

As shown in Fig. 9, the resultant equation leads us to a fascinating relationship of the two
completely different processes through the inverse statistics. One denotes NQA toward the
Nishimori line, while the other expresses for the symmetric distribution.

We can find the exact results through the inverse statics of the inverse statics of Eq. (66). Let us
further consider the case for the two-point correlation OT = σz

i σz
j . Taking the configurational

average of both sides under the condition βp = β, we find

[

1

〈σz
i σz

j e−βW〉QA

]

β

=
(cosh βΓ0)

N

(cosh βJ)NB

[

1

〈σz
i σz

j 〉β

]

β

. (86)

The quantity on the right-hand side becomes unity by the analysis with the gauge
transformation as has been shown in the literatures [18, 19]. We thus reach a simple exact
relation

[

1

〈σz
i σz

j e−βW〉QA

]

β

=
(cosh βΓ0)

N

(cosh βJ)NB
, (87)

which is another exact identity for processes of NQA.

We obtain several exact nontrivial relations between completely different paths in NQA as
shown above by use of the gauge transformation, which is a specialized tool to analyze spin
glasses. We should notice that such results are very rare for the nonequilibrium behavior
in disordered quantum system. The importance of the above equalities is still not clear.
We emphasize that, when we realize the quantum spin systems in experiments, the above
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results would be a valuable platform to confirm their precisions and conditions. The quantum
annealing is originally intended to be a tool implemented in so-called quantum computer.
Therefore we need theoretical studies not only on the performance in the application but also
how to make good condition to implement the protocol. In this regard, our studies shed light
on the future indicator to open the way to realize the generic solver in the quantum computer.
We must continue the active studies in this direction.

5. Conclusion

We reviewed several recent active studies on the alternatives of SA with use of the novel

substantial progress in statistical physics. The key point was to exploit the nonequilibrium

behavior during performing the active control on the system. The Jarzynski equality states

the possibility to estimate the equilibrium quantities by the average quantity through the

nonequilibrium behavior. It means that we can invent several new strategies by use of JE

away from the paradigm of the simulated annealing, which sticks to the quasi-static dynamics.
The population annealing is a starting point of the studies in this direction. It is certain

that population annealing find out the desired solution of the optimization problem from

the property of JE faster than SA. Roughly speaking, the population annealing cuts the

computational time (CPU) by use of the parallel dynamics (memory). The remaining problem

is to evaluate its qualitative performance of PA for the optimization problem.

Not only the direct use of PA, we propose another type of its application in this chapter.

Regarding on this type, we show skillful analyses by use of the special symmetry hidden

in spin glasses to give several nontrivial exact relations. The resultant relations are useful to

investigate the low-temperature region for spin glasses if we implement them by aid of PA,

since we do not suffer from the critical slowing down peculiar in spin glass.

Meanwhile, if we employ a different rule to drive the system, we would be able to find

the way to solve the optimization problem as SA. We reviewed QA, which was by use of

quantum fluctuations as a driver. The specialized version of QA, QAC, is found to has a

crucial bottleneck to solve a part of the optimization problem. Therefore we need to remove

this problem while keeping its generality as a solver of the optimization problem. We again

considered the application of JE to propose an alternative method, NQA. Although we do

not assess its quantitative performance in the application to the optimization problem, our

proposal gives a new paradigm to solve the optimization problem through the physical

process like SA. We have to emphasize that QA was invented to solve the optimization

problem in quantum computer. Therefore we must prepare the quantitative results to verify

the precision and conditions in the actual experience on quantum computers. Along this

line, we gave several results for the nonequilibrium behavior in the quantum system with

gauge symmetry. These studies would be significant in the future development to realize the

quantum computation.

Beyond the original version of SA, in order to find the desired solution as fast as possible, we

must be away from the quasi-static procedure. The key point is to deal with nonequilibrium

behavior. The further understanding of its peculiar behavior in statistical physics would be

helpful to invent a genius and generic solver as PA and NQA.
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