7 research outputs found

    Quantum Theory and Conceptuality: Matter, Stories, Semantics and Space-Time

    Get PDF
    We elaborate the new interpretation of quantum theory that we recently proposed, according to which quantum particles are considered conceptual entities mediating between pieces of ordinary matter which are considered to act as memory structures for them. Our aim is to identify what is the equivalent for the human cognitive realm of what physical space-time is for the realm of quantum particles and ordinary matter. For this purpose, we identify the notion of 'story' as the equivalent within the human cognitive realm of what ordinary matter is in the physical quantum realm, and analyze the role played by the logical connectives of disjunction and conjunction with respect to the notion of locality. Similarly to what we have done in earlier investigations on this new quantum interpretation, we use the specific cognitive environment of the World-Wide Web to elucidate the comparisons we make between the human cognitive realm and the physical quantum realm.Comment: 14 page

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    modeling the evolution of context in information retrieval

    Get PDF
    An Information Retrieval (IR) system ranks documents according to their predicted relevance to a formulated query. The prediction depends on the ranking algorithm adopted and on the assumptions about relevance underlying the algorithm. The main assumption is that there is one user, one information need for each query, one location where the user is, and no temporal dimension. But this assumption is unlikely: relevance is context-dependent. Exploiting the context in a way that does not require an high user effort may be effective in IR as suggested for example by Implicit Relevance Feedback techniques. The high number of factors to be considered by these techniques suggests the adoption of a theoretical framework which naturally incorporates multiple sources of evidence. Moreover, the information provided by the context might be a useful source of evidence in order to personalize the results returned to the user. Indeed, the information need arises and evolves in the present and past context of the user. Since the context changes in time, modeling the way in which the context evolves might contribute to achieve personalization. Starting from some recent reconsiderations of the geometry underlying IR and their contribution to modeling context, in this paper some issues which will be the starting point for my PhD research activity are discussed

    La mecánica cuántica y la conceptualidad: materia, historias, semántica y espacio-tiempo

    Get PDF
    We elaborate the new interpretation of quantum theory that we recently proposed, according to which quantum particles are considered conceptual entities mediating between pieces of ordinary matter which are considered to act as memory structures for them. Our aim is to identify what is the equivalent for the human cognitive realm of what physical space-time is for the realm of quantum particles and ordinary matter. For this purpose, we identify the notion of 'story' as the equivalent within the human cognitive realm of what ordinary matter is in the physical quantum realm, and analyze the role played by the logical connectives of disjunction and conjunction with respect to the notion of locality. Similarly to what we have done in earlier investigations on this new interpretation of quantum theory, we use the specific cognitive environment of the Internet to elucidate the comparisons we make between the human cognitive realm and the physical quantum realm.Elaboramos aquí una nueva interpretación propuesta recientemente de la teoría cuántica, según la cual las partículas cuánticas son consideradas como entidades conceptuales que median entre los pedazos de materia ordinaria los cuales son considerados como estructuras de memoria para ellos. Nuestro objetivo es identificar qué es lo equivalente para el ámbito cognitivo humano de lo que el espacio-tiempo físico es para el ámbito de las partículas cuánticas y de la materia ordinaria. Para ello, se identifica la noción de "historia" como el equivalente en la esfera cognitiva humana de lo que la materia ordinaria es en el ámbito físico cuántico. Analizamos también el papel desempeñado por los conectivos lógicos de disyunción y de conjunción con respecto a la noción de localidad. De manera similar a lo que hemos hecho en investigaciones anteriores referidas a esa nueva interpretación de la teoría cuántica, se utiliza el entorno cognitivo específico de la Internet para dilucidar las comparaciones que hacemos entre el ámbito cognitivo humano y el ámbito físico cuántico

    Foundations research in information retrieval inspired by quantum theory

    Get PDF
    In the information age information is useless unless it can be found and used, search engines in our time thereby form a crucial component of research. For something so crucial, information retrieval (IR), the formal discipline investigating search, can be a confusing area of study. There is an underlying difficulty, with the very definition of information retrieval, and weaknesses in its operational method, which prevent it being called a 'science'. The work in this thesis aims to create a formal definition for search, scientific methods for evaluation and comparison of different search strategies, and methods for dealing with the uncertainty associated with user interactions; so that one has the necessary formal foundation to be able to perceive IR as "search science". The key problems restricting a science of search pertain to the ambiguity in the current way in which search scenarios and concepts are specified. This especially affects evaluation of search systems since according to the traditional retrieval approach, evaluations are not repeatable, and thus not collectively verifiable. This is mainly due to the dependence on the method of user studies currently dominating evaluation methodology. This evaluation problem is related to the problem of not being able to formally define the users in user studies. The problem of defining users relates in turn to one of the main retrieval-specific motivations of the thesis, which can be understood by noticing that uncertainties associated with the interpretation of user interactions are collectively inscribed in a relevance concept, the representation and use of which defines the overall character of a retrieval model. Current research is limited in its understanding of how to best model relevance, a key factor restricting extensive formalization of the IR discipline as a whole. Thus, the problems of defining search systems and search scenarios are the principle issues preventing formal comparisons of systems and scenarios, in turn limiting the strength of experimental evaluation. Alternative models of search are proposed that remove the need for ambiguous relevance concepts and instead by arguing for use of simulation as a normative evaluation strategy for retrieval, some new concepts are introduced that can be employed in judging effectiveness of search systems. Included are techniques for simulating search, techniques for formal user modelling and techniques for generating measures of effectiveness for search models. The problems of evaluation and of defining users are generalized by proposing that they are related to the need for an unified framework for defining arbitrary search concepts, search systems, user models, and evaluation strategies. It is argued that this framework depends on a re-interpretation of the concept of search accommodating the increasingly embedded and implicit nature of search on modern operating systems, internet and networks. The re-interpretation of the concept of search is approached by considering a generalization of the concept of ostensive retrieval producing definitions of search, information need, user and system that (formally) accommodates the perception of search as an abstract process that can be physical and/or computational. The feasibility of both the mathematical formalism and physical conceptualizations of quantum theory (QT) are investigated for the purpose of modelling the this abstract search process as a physical process. Techniques for representing a search process by the Hilbert space formalism in QT are presented from which techniques are proposed for generating measures for effectiveness that combine static information such as term weights, and dynamically changing information such as probabilities of relevance. These techniques are used for deducing methods for modelling information need change. In mapping the 'macro level search' process to 'micro level physics' some generalizations were made to the use and interpretation of basic QT concepts such the wave function description of state and reversible evolution of states corresponding to the first and second postulates of quantum theory respectively. Several ways of expressing relevance (and other retrieval concepts) within the derived framework are proposed arguing that the increase in modelling power by use of QT provides effective ways to characterize this complex concept. Mapping the mathematical formalism of search to that of quantum theory presented insightful perspectives about the nature of search. However, differences between the operational semantics of quantum theory and search restricted the usefulness of the mapping. In trying to resolve these semantic differences, a semi-formal framework was developed that is mid-way between a programmatic language, a state-based language resembling the way QT models states, and a process description language. By using this framework, this thesis attempts to intimately link the theory and practice of information retrieval and the evaluation of the retrieval process. The result is a novel, and useful way for formally discussing, modelling and evaluating search concepts, search systems and search processes

    Quantum theory and the nature of search

    No full text
    The conceptual model and mathematical formalism of quan- tum theory are employed in creating a novel framework for modeling the computational search process addressing problematic issues that restrict information retrieval research. Mapping the mathematical formalism of search to that of quantum theory presents insightful perspectives about the na- ture of search. However, differences in operational semantics of quantum theory and search restrict the utility of the map- ping. An approach is suggested for resolving these semantic differences aiming toward a sound mathematical and concep- tual framework for search inspired by quantum theor
    corecore