15 research outputs found

    Linear representations of regular rings and complemented modular lattices with involution

    Full text link
    Faithful representations of regular ∗\ast-rings and modular complemented lattices with involution within orthosymmetric sesquilinear spaces are studied within the framework of Universal Algebra. In particular, the correspondence between classes of spaces and classes of representables is analyzed; for a class of spaces which is closed under ultraproducts and non-degenerate finite dimensional subspaces, the latter are shown to be closed under complemented [regular] subalgebras, homomorphic images, and ultraproducts and being generated by those members which are associated with finite dimensional spaces. Under natural restrictions, this is refined to a 11-11-correspondence between the two types of classes

    A discussion on the origin of quantum probabilities

    Get PDF
    We study the origin of quantum probabilities as arising from non-boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorvian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).Comment: Improved versio

    Remarks on the order-theoretical and algebraic properties of quantum structures

    Get PDF
    This thesis is concerned with the analysis of common features and distinguishing traits of algebraic structures arising in the sharp as well as in the unsharp approaches to quan- tum theory both from an order-theoretical and an algebraic perspective. Firstly, we recall basic notions of order theory and universal algebra. Furthermore, we introduce fundamental concepts and facts concerning the algebraic structures we deal with, from orthomodular lattices to e↔ect algebras, MV algebras and their non-commutative gener- alizations. Finally, we present Basic algebras as a general framework in which (lattice) quantum structures can be studied from an universal algebraic perspective. Taking advantage of the categorical (term-)equivalence between Basic algebras and Lukasiewicz near semirings, in Chapter 3 we provide a structure theory for the lat- ter in order to highlight that, if turned into near-semirings, orthomodular lattices, MV algebras and Basic algebras determine ideals amenable of a common simple description. As a consequence, we provide a rather general Cantor-Bernstein Theorem for involutive left-residuable near semirings. In Chapter 4, we show that lattice pseudoe↔ect algebras, i.e. non-commutative gener- alizations of lattice e↔ect algebras can be represented as near semirings. One one side, this result allows the arithmetical treatment of pseudoe↔ect algebras as total structures; on the other, it shows that near semirings framework can be really seen as the common “ground” on which (commutative and non commutative) quantum structures can be studied and compared. In Chapter 5 we show that modular paraorthomodular lattices can be represented as semiring-like structures by first converting them into (left-) residuated structures. To this aim, we show that any modular bonded lattice A with antitone involution satisfying a strengthened form of regularity can be turned into a left-residuated groupoid. This condition turns out to be a sucient and necessary for a Kleene lattice to be equipped with a Boolean-like material implication. Finally, in order to highlight order theoretical peculiarities of orthomodular quantum structures, in Chapter 6 we weaken the notion of orthomodularity for posets by introduc- ing the concept of the generalized orthomodularity property (GO-property) expressed in terms of LU-operators. This seemingly mild generalization of orthomodular posets and its order theoretical analysis yields rather strong applications to e↔ect algebras, and orthomodular structures. Also, for several classes of orthoalgebras, the GO-property yields a completely order-theoretical characterization of the coherence law and, in turn, of proper orthoalgebras

    Acta Scientiarum Mathematicarum : Tomus 52. Fasc. 1-2.

    Get PDF

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems
    corecore