24 research outputs found

    Quantum computation with abelian anyons on the honeycomb lattice

    Get PDF
    We consider a two-dimensional spin system that exhibits abelian anyonic excitations. Manipulations of these excitations enable the construction of a quantum computational model. While the one-qubit gates are performed dynamically the model offers the advantage of having a two-qubit gate that is of topological nature. The transport and braiding of anyons on the lattice can be performed adiabatically enjoying the robust characteristics of geometrical evolutions. The same control procedures can be used when dealing with non-abelian anyons. A possible implementation of the manipulations with optical lattices is developed.Comment: 4 pages, 3 figures, REVTEX, improved presentation and implementatio

    Quantum gates with topological phases

    Full text link
    We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid state implementation are briefly discussed.Comment: 2 figures, RevTex

    Topological Features in Ion Trap Holonomic Computation

    Get PDF
    Topological features in quantum computing provide controllability and noise error avoidance in the performance of logical gates. While such resilience is favored in the manipulation of quantum systems, it is very hard to identify topological features in nature. This paper proposes a scheme where holonomic quantum gates have intrinsic topological features. An ion trap is employed where the vibrational modes of the ions are coherently manipulated with lasers in an adiabatic cyclic way producing geometrical holonomic gates. A crucial ingredient of the manipulation procedures is squeezing of the vibrational modes, which effectively suppresses exponentially any undesired fluctuations of the laser amplitudes, thus making the gates resilient to control errors.Comment: 9 pages, 4 figures, REVTE

    Negative Quasi-Probability as a Resource for Quantum Computation

    Full text link
    A central problem in quantum information is to determine the minimal physical resources that are required for quantum computational speedup and, in particular, for fault-tolerant quantum computation. We establish a remarkable connection between the potential for quantum speed-up and the onset of negative values in a distinguished quasi-probability representation, a discrete analog of the Wigner function for quantum systems of odd dimension. This connection allows us to resolve an open question on the existence of bound states for magic-state distillation: we prove that there exist mixed states outside the convex hull of stabilizer states that cannot be distilled to non-stabilizer target states using stabilizer operations. We also provide an efficient simulation protocol for Clifford circuits that extends to a large class of mixed states, including bound universal states.Comment: 15 pages v4: This is a major revision. In particular, we have added a new section detailing an explicit extension of the Gottesman-Knill simulation protocol to deal with positively represented states and measurement (even when these are non-stabilizer). This paper also includes significant elaboration on the two main results of the previous versio

    Quantum Holonomies for Quantum Computing

    Get PDF
    Holonomic Quantum Computation (HQC) is an all-geometrical approach to quantum information processing. In the HQC strategy information is encoded in degenerate eigen-spaces of a parametric family of Hamiltonians. The computational network of unitary quantum gates is realized by driving adiabatically the Hamiltonian parameters along loops in a control manifold. By properly designing such loops the non-trivial curvature of the underlying bundle geometry gives rise to unitary transformations i.e., holonomies that implement the desired unitary transformations. Conditions necessary for universal QC are stated in terms of the curvature associated to the non-abelian gauge potential (connection) over the control manifold. In view of their geometrical nature the holonomic gates are robust against several kind of perturbations and imperfections. This fact along with the adiabatic fashion in which gates are performed makes in principle HQC an appealing way towards universal fault-tolerant QC.Comment: 16 pages, 2 figures, REVTE

    Vortex Loops and Majoranas

    Full text link
    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We first give some general results, and then we focus on ladder Hamiltonian examples to test further ideas. Two methods yield exact results: i.) We utilize the mapping of spin Hamiltonians to quartic interactions of Majoranas and show under certain conditions the spectra of these two examples coincide. ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices. Aside from these exact results, two additional methods suggest wider applicability of these results: iii.) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. iv.) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.Comment: 28 page
    corecore