14,996 research outputs found

    Span programs and quantum algorithms for st-connectivity and claw detection

    Full text link
    We introduce a span program that decides st-connectivity, and generalize the span program to develop quantum algorithms for several graph problems. First, we give an algorithm for st-connectivity that uses O(n d^{1/2}) quantum queries to the n x n adjacency matrix to decide if vertices s and t are connected, under the promise that they either are connected by a path of length at most d, or are disconnected. We also show that if T is a path, a star with two subdivided legs, or a subdivision of a claw, its presence as a subgraph in the input graph G can be detected with O(n) quantum queries to the adjacency matrix. Under the promise that G either contains T as a subgraph or does not contain T as a minor, we give O(n)-query quantum algorithms for detecting T either a triangle or a subdivision of a star. All these algorithms can be implemented time efficiently and, except for the triangle-detection algorithm, in logarithmic space. One of the main techniques is to modify the st-connectivity span program to drop along the way "breadcrumbs," which must be retrieved before the path from s is allowed to enter t.Comment: 18 pages, 4 figure

    Quantum algorithms for connectivity and related problems

    Get PDF
    An important family of span programs, st-connectivity span programs, have been used to design quantum algorithms in various contexts, including a number of graph problems and formula evaluation problems. The complexity of the resulting algorithms depends on the largest positive witness size of any 1-input, and the largest negative witness size of any 0-input. Belovs and Reichardt first showed that the positive witness size is exactly characterized by the effective resistance of the input graph, but only rough upper bounds were known previously on the negative witness size. We show that the negative witness size in an st-connectivity span program is exactly characterized by the capacitance of the input graph. This gives a tight analysis for algorithms based on st-connectivity span programs on any set of inputs. We use this analysis to give a new quantum algorithm for estimating the capacitance of a graph. We also describe a new quantum algorithm for deciding if a graph is connected, which improves the previous best quantum algorithm for this problem if we're promised that either the graph has at least k > 1 components, or the graph is connected and has small average resistance, which is upper bounded by the diameter. We also give an alternative algorithm for deciding if a graph is connected that can be better than our first algorithm when the maximum degree is small. Finally, using ideas from our second connectivity algorithm, we give an algorithm for estimating the algebraic connectivity of a graph, the second largest eigenvalue of the Laplacian

    Applications of the Quantum Algorithm for st-Connectivity

    Get PDF
    We present quantum algorithms for various problems related to graph connectivity. We give simple and query-optimal algorithms for cycle detection and odd-length cycle detection (bipartiteness) using a reduction to st-connectivity. Furthermore, we show that our algorithm for cycle detection has improved performance under the promise of large circuit rank or a small number of edges. We also provide algorithms for detecting even-length cycles and for estimating the circuit rank of a graph. All of our algorithms have logarithmic space complexity

    Exploring Network-Related Optimization Problems Using Quantum Heuristics

    Get PDF
    Network-related connectivity optimization problems are underlying a wide range of applications and are also of high computational complexity. We consider studying network optimization problems using two types of quantum heuristics.One is quantum annealing, and the other Quantum Alternating Operator Ansatz, an extension of the Quantum Approximate Optimization Algorithms for gate-model quantum computation, in which a cost-function based unitary and a non-commuting mixing unitary are applied alternately. We present problem mappings for problems of finding the spanning-tree or spanning-graph of a graph that optimizes certain costs, and a variant that further requires the spanning-tree be degree-bounded. With quantum annealing, all constraints are cast into penalty terms in the cost Hamiltonian, and the solution is encoded as the ground state of the Hamiltonian. We provide three mappings to the quadratic unconstrained binary optimization (QUBO) form, compare the resource requirements, and analyze the tradeoffs. For QAOA, we give special focus on the design of mixers based on the constraints presented in the problem, such that the system evolution remains in a subspace of the full Hilbert space where all constraints are satisfied. In the spanning-tree problem, one such hard constraint is that a mixer applied to a spanning-tree needs also be a spanning tree. This involves checking the connectivity of a subgraph, which is a global condition common for most network-related problems. We show how this feature can be efficiently represented in the mixer in a quantum coherent way, based on manipulation of a descendant-matrix and an adjacent matrix. We further develop a mixer for the spanning-graphs based on the spanning-tree mixer

    On the quantum simulation of complex networks

    Full text link
    Quantum walks provide a natural framework to approach graph problems with quantum computers, exhibiting speedups over their classical counterparts for tasks such as the search for marked nodes or the prediction of missing links. Continuous-time quantum walk algorithms assume that we can simulate the dynamics of quantum systems where the Hamiltonian is given by the adjacency matrix of the graph. It is known that such can be simulated efficiently if the underlying graph is row-sparse and efficiently row-computable. While this is sufficient for many applications, it limits the applicability for this class of algorithms to study real world complex networks, which, among other properties, are characterized by the existence of a few densely connected nodes, called hubs. In other words, complex networks are typically not row-sparse, even though the average connectivity over all nodes can be very small. In this work, we extend the state-of-the-art results on quantum simulation to graphs that contain a small number of hubs, but that are otherwise sparse. Hopefully, our results may lead to new applications of quantum computing to network science.Comment: 22 pages, 1 figure, 1 tabl
    corecore