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Abstract
An important family of span programs, st-connectivity span programs, have been used to design
quantum algorithms in various contexts, including a number of graph problems and formula
evaluation problems. The complexity of the resulting algorithms depends on the largest positive
witness size of any 1-input, and the largest negative witness size of any 0-input. Belovs and
Reichardt first showed that the positive witness size is exactly characterized by the effective
resistance of the input graph, but only rough upper bounds were known previously on the negative
witness size. We show that the negative witness size in an st-connectivity span program is exactly
characterized by the capacitance of the input graph. This gives a tight analysis for algorithms
based on st-connectivity span programs on any set of inputs.

We use this analysis to give a new quantum algorithm for estimating the capacitance of a
graph. We also describe a new quantum algorithm for deciding if a graph is connected, which
improves the previous best quantum algorithm for this problem if we’re promised that either the
graph has at least κ > 1 components, or the graph is connected and has small average resistance,
which is upper bounded by the diameter. We also give an alternative algorithm for deciding
if a graph is connected that can be better than our first algorithm when the maximum degree
is small. Finally, using ideas from our second connectivity algorithm, we give an algorithm for
estimating the algebraic connectivity of a graph, the second largest eigenvalue of the Laplacian.
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1 Introduction

Span programs are an algebraic model of computation first developed by Karchmer and
Wigderson [10] to study classical logspace complexity, and introduced to the study of quantum
algorithms by Reichardt and Spǎlek [15]. In [14, 12], Reichardt used the concept of span
programs to prove that the general adversary bound gives a tight lower bound on the quantum
query complexity of any given decision problem, thus showing the deep connection between
span programs and quantum query algorithms.

Given a span program, a generic transformation compiles it into a quantum algorithm,
whose query complexity is analyzed by taking the geometric mean of two quantities: the
largest positive witness size of any 1-input; and the largest negative witness size of any
0-input. Thus, in order to analyze the query complexity of an algorithm obtained in this
way, it is necessary to characterize, or at least upper bound, these quantities.

The relationship between quantum query algorithms and span programs is potentially a
powerful tool, but this correspondence alone is not a recipe for finding such an algorithm,
and producing an optimal span program for a given problem is generally difficult. Despite
this difficulty, a number have been found for important problems such as k-distinctness [2],
formula evaluation [15, 13], and st-connectivity [4]. The latter span program is of particular
importance, as it has been applied to a number of graph problems [5], to generic formula
evaluation problems [9], and underlies the learning graph framework [3]. The st-connectivity
based algorithms are also of interest because, unlike with generic span program algorithms,
it is often possible to analyze not only query complexity, but also the time complexity.

While span program algorithms are universal for quantum query algorithms, it can also
be fruitful to analyze the unitaries used in these algorithms in ways that are different from
how they appear in the standard span program algorithm. For example, Ref. [7] derives an
algorithm to estimate span program witness sizes based on unitaries that appear in the span
program algorithm. We will take a similar approach in this paper, deriving new algorithms
based on unitaries that appear in the span program algorithm for st-connectivity.

The problems of st-connectivity and connectivity will be considered in this paper. For a
family of undirected graphs G on N edges, for N ∈ N, and vertex set containing s and t, the
problem st-connG is the following: Given x ∈ {0, 1}E(G), decide if there is a path from s

to t in G(x), where G(x) is the subgraph of G obtained by including an edge e if xe = 11.
Similarly, the problem of connG is the following: Given x ∈ {0, 1}E(G), determine if every
vertex in G(x) is connected to every other vertex in G(x).

1.1 Contributions
1. We provide a complete characterization of the query complexity of the st-connectivity

span program algorithm. We do this by showing that the negative witness size of the
st-connectivity span program is exactly the effective capacitance of the input graph.
(The positive witness size for this span program was previously known to be exactly
the effective resistance [4, 9].) The effective capacitance is a measure that depends on
the size and number of cuts between s and t (in the case they are disconnected), and is
commonly used to analyze electrical networks of capacitors. This characterization tells us
that quantum algorithms can quickly decide st-connectivity on graphs that are promised
to have either small effective resistance or small effective capacitance.

1 We can consider more complicated ways of associating edges with input variables in 2.2, but the basic
idea is captured by this simpler picture.
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2. We describe a new quantum algorithm for estimating the effective capacitance of an input
graph G(x) to multiplicative error ε, with complexity Õ(ε−3/2√Cs,t(G(x))p), where
Cs,t(G(x)) is the effective-capacitance between s and t in G(x), and p is the length of
the longest self-avoiding st-path in G.

3. We create and analyze a new algorithm for connG. Previously, for a graph with n

vertices, an optimal Õ(n3/2) upper bound on the time complexity of this problem was
known [6], and an optimal span-program-based quantum algorithm was presented by
Ārin, š [1], which also uses only O(logn) space. If R upper bounds the average resistance
of any connected input, all disconnected inputs have at least κ > 1 components, and U is
the cost of taking a step of a quantum walk on G then our algorithm has the following
properties:

For graphs without multi-edges, our algorithm has query complexity O(n
√
R/κ) and

time complexity Õ(n
√
R/κU).

For graphs with multi-edges, our algorithm has query complexity O(n
3/4
√
Rdmax(G)
κ1/4 ),

where dmax(G) is the maximum degree of any vertex in the graph, and time complexity
Õ(n3/4

√
Rdmax(G)/κ1/4U).

Our algorithm uses O(logn) space.

Our algorithm is the first connectivity algorithm to explicity apply to cases where G is
not necessarily the complete graph.

In the worst case, our algorithm achieves the optimal query complexity of O(n3/2).

4. We present an alternative approach to deciding graph connectivity using phase estimation
on a unitary derived from the st-connectivity span program. This phase estimation uses
a different initial state from that used in the span program algorithm. We first show
that the quantum query complexity of deciding connG is O(

√
ndmax(G)/(κλ)), when

either G(x) is connected and the second smallest eigenvalue of the Laplacian of G(x),
λ2(G(x)), is at least λ, or G(x) has at least κ > 1 connected components. We are able to
give time-efficient versions of our second algorithm in two contexts:

a. Under the promise that if G(x) is connected, then λ2(G(x)) ≥ λ, and otherwise
G(x) has at least κ connected components, we can solve connG in time complexity

Õ

(√
ndavg(G)
κλ2(G)

(
S +

√
dmax(G)

λ U
))

, where U is the complexity of implementing a step

of a quantum walk on G, S is the cost generating a quantum state corresponding to
the stationary distribution of a random walk on G, and davg(G) is the average degree
of the vertices of G.

b. When G is a Cayley graph of degree d, the time complexity is upper bounded by

Õ

(√
nd
κλU +

√
nd

κλ2(G) Λ
)
, where Λ is the cost of computing the eigenvalues of G. This

gives an upper bound of Õ(n/
√
λκ) when G is a complete graph, and Õ(

√
n/(λκ))

when G is a Boolean hypercube.

5. We give an algorithm to estimate the algebraic connectivity of G(x), λ2(G(x)), when G
is a complete graph. The algebraic connectivity is closely related to the inverse of the
mixing time, which is known to be small for many interesting families of graphs such
as expander graphs. We give a protocol that with probability at least 2/3 outputs an

estimate of λ2(G(x)) up to multiplicative error ε in time complexity Õ
(

1
ε

n√
λ2(G(x))

)
.
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1.2 Open Problems
Our work suggests several directions for new research. Since st-connectivity is fairly ubiqui-
tous, it seems that our approach may, in turn, help analyze applications of st-connectivity.
Additionally, we provide two algorithms for deciding connectivity, items 3 and 4 above. At
least naively, it seems like our two algorithms are incomparable, even though they are based
on similar unitaries. It would be worthwhile to understand whether the two approaches are
fundamentally different. Finally, it would be interesting to see whether one can extend our
algorithm for estimating algebraic connectivity to accept more general parent graphs than
the complete graph.

2 Preliminaries

2.1 Linear Algebra Notation
For a subspace V of some inner product space, let ΠV denote the orthogonal projector onto V .
For a linear operator A, let σmin(A) (respectively σmax(A)) denote its smallest (resp. largest)
non-zero singular value. Let kerA denote the kernel of A, row(A) denote the rowspace of
A, and col(A) the columnspace of A. For a unitary U with eigenvalues eiθ1 , . . . , eiθN , let
∆(U) = min{|θi| : θi 6= 0} denote the phase gap of U .

2.2 Graph Theory
We will consider multigraphs, so we refer to each edge in the graph using its endpoints and a
unique label `, as, for example: ({u, v}, `). The label ` uniquely specifies the edge, but we
include the endpoints for convenience. Let −→E (G) = {(u, v, `) : ({u, v}, `) ∈ E(G)} be the
directed edges of G. Furthermore, for any set of edges E, we let −→E = {(u, v, `) : ({u, v}, `) ∈
E} represent the corresponding set of directed edges. We will sometimes write (u, v, `) for
an undirected edge, but when talking about undirected edges, we have (u, v, `) = (v, u, `).

For x ∈ {0, 1}E(G), we define G(x) as the subgraph of G in which e ∈ E(G) is included
if and only if xe = 1. In general there can be a more complicated association between the
edges of G and literals xi and x̄i, but for simplicity, we don’t make this explicit.

A network N = (G, c) consists of a graph G combined with a positive real-valued
weight function c : E(G) −→ R+. Since c is a map on undirected edges, we can easily
extend it to map on directed edges such that c(u, v, `) = c(v, u, `), and we overload our
notation accordingly. We will often assume that some c is implicit for a graph G and let
AG =

∑
(u,v,`)∈E(G) c(u, v, `)(|u〉〈v|+ |v〉〈u|) denote its weighted adjacency matrix. Note that

AG only depends on the total weight of edges from u to v, and is independent of the number
of edges across which this weight is distributed. Let dG(u) =

∑
v,`:(u,v,`)∈E(G) c(u, v, `) denote

the weighted degree of u in G, under the implicit weight function c, and let dmax(G) =
maxu∈V (G) dG(u). Let DG =

∑
u∈V (G) dG(u)|u〉〈u| denote the weighted degree matrix, and

let LG = DG −AG denote the Laplacian of G. The Laplacian is always positive semidefinite,
so its eigenvalues are real and non-negative. For |µ〉 =

∑
u∈V (G) |u〉, it is always the case

that LG|µ〉 = 0, so the smallest eigenvalue of LG is 0. Let λ2(G) denote the second smallest
eigenvalue of LG, including multiplicity. This value is called the algebraic connectivity or the
Fiedler value of G, and it is non-zero if and only if G is connected.

Consider a graph G with specially labeled vertices s and t that are connected in G. An
st-flow is any linear combination of st-paths. More precisely:
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I Definition 1 (Unit st-flow and energy). Let G be an undirected graph with s, t ∈ V (G),
and s and t connected. Then a unit st-flow on G is a function θ : −→E (G)→ R such that:
1. For all (u, v, `) ∈ −→E (G), θ(u, v, `) = −θ(v, u, `);
2.
∑
v,`:(s,v,`)∈−→E (G) θ(s, v, `) =

∑
v,`:(v,t,`)∈−→E (G) θ(v, t, `) = 1; and

3. for all u ∈ V (G) \ {s, t},
∑
v,`:(u,v,`)∈−→E (G) θ(u, v, `) = 0.

Given an implicit weighting c, the unit flow energy of θ on E′ ⊆ E(G(x)), is JE′(θ) =
1
2
∑
e∈
−→
E′

θ(e)2

c(e) .

I Definition 2 (Effective resistance and average resistance). Let G be a graph with implicit
weighting c and s, t ∈ V (G). If s and t are connected in G(x), the effective resistance of G(x)
between s and t is Rs,t(G(x)) = minθ JE(G(x))(θ), where θ runs over all unit st-unit flows of
G(x). If s and t are not connected in G(x), Rs,t(G(x)) =∞. For a connected graph G, we
can define the average resistance by Ravg(G) := 1

n(n−1)
∑
s,t∈V :s6=tRs,t(G).

Intuitively, Rs,t characterizes “how connected” the vertices s and t are in a network. The
more, shorter paths connecting s and t, and the more weight on those paths, the smaller the
effective resistance. We next introduce a measure of how disconnected s and t are, in the
case that we are considering a subgraph G(x) of G where s and t are not connected.

I Definition 3 (Unit st-potential). Let G be an undirected weighted graph with s, t ∈ V (G),
and s and t connected. For G(x) such that s and t are not connected, a unit st-potential
on G(x) is a function V : V (G)→ R+ such that V(s) = 1 and V(t) = 0 and V(u) = V(v) if
(u, v, `) ∈ E(G(x)).

A unit st-potential is a witness of the disconnectedness of s and t in G(x), which generalizes
the notion of an st-cut. (An st-cut is a unit potential that only takes values 0 and 1.)

I Definition 4 (Unit Potential Energy). Given a graph G with implicit weighting c and
a unit st-potential V on G(x), the unit potential energy of V on E′ ⊆ E(G) is defined
JE′(V) = 1

2
∑

(u,v,`)∈
−→
E′

(V(u)− V(v))2c(u, v, `).

I Definition 5 (Effective capacitance). Let G be a graph with implicit weighting c and
s, t ∈ V (G). If s and t are not connected in G(x), the effective capacitance between s and t
of G(x) is Cs,t(G(x)) = minV JE(G)(V), where V runs over all unit st-potentials on G(x). If
s and t are connected, Cs,t(G(x)) =∞.

In physics, capacitance measures how well a system of two separated conductors stores
electric charge. The ratio of the amount of stored charge to the voltage difference between
the conductors is a constant that depends only on the geometry of the set-up. This ratio is
called the effective capacitance. We discuss this intuition further in Section 2.2 and Appendix
A of [8].

Connectivity and st-connectivity

We will consider problems parametrized by a parent graph G, by which we more precisely
mean a family of graphs {Gn}n∈N where Gn is a graph on n vertices. We will generally drop
the subscript n.

A graph is connected if there is a path between every pair of vertices. For a family of
graphs G, and X ⊆ {0, 1}E(G), connG,X is the connectivity problem, defined for all x ∈ X
by connG,X(x) = 1 if G(x) is connected, and connG,X(x) = 0 if G(x) is not connected.

Similarly, for s, t ∈ V (G), defined st-connG,X by st-connG,X(x) = 1 if there is a path
from s to t in G(x), and st-connG,X(x) = 0 otherwise, for all x ∈ X.

ESA 2018



49:6 Quantum Algorithms for Connectivity and Related Problems

We will consider conn and st-conn in the edge-query input model, meaning that we
have access to a standard quantum oracle Ox, defined Ox|i〉|b〉 = |i〉|b⊕ xi〉, where xi is the
ith bit of i. Since every edge of G is associated with an input variable, as described in 2.2,
for any edge in G, we can check if it is also present in G(x) using one query to Ox.

2.3 Span Programs and Witness Sizes
Span programs [10] were introduced to quantum algorithms by Reichardt and Špalek [15],
and have since proven to be important for designing quantum algorithms in the query model.

I Definition 6 (Span Program). A span program P = (H,U, τ, A) on {0, 1}N is made up of
(I) finite-dimensional inner product spaces H = H1⊕· · ·⊕HN , and {Hj,b ⊆ Hj}j∈[N ],b∈{0,1}
such that Hj,0 +Hj,1 = Hj , (II) a vector space U , (III) a non-zero target vector τ ∈ U , and
(IV) a linear operator A : H → U . For every string x ∈ {0, 1}N , we associate the subspace
H(x) := H1,x1 ⊕ · · · ⊕HN,xN

, and an operator A(x) := AΠH(x).

I Definition 7 (Positive and Negative Witness). Let P be a span program on {0, 1}N and let
x be a string x ∈ {0, 1}N . Then we call |w〉 a positive witness for x in P if |w〉 ∈ H(x), and
A|w〉 = τ . We define the positive witness size of x as:

w+(x, P ) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = τ}, (1)

if there exists a positive witness for x, and w+(x) =∞ otherwise.
Let L(U,R) denote the set of linear maps from U to R. We call a linear map ω ∈ L(U,R)

a negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative witness
size of x as:

w−(x, P ) = w−(x) = min{‖ωA‖2 : ω ∈ L(U,R), ωAΠH(x) = 0, ωτ = 1}, (2)

if there exists a negative witness, and w−(x) =∞ otherwise. If w+(x) is finite, we say that
x is positive (wrt. P ), and if w−(x) is finite, we say that x is negative. We let P1 denote the
set of positive inputs, and P0 the set of negative inputs for P .

For a function f : X → {0, 1}, with X ⊆ {0, 1}N , we say P decides f if f−1(0) ⊆ P0 and
f−1(1) ⊆ P1. Given a span program P that decides f , one can use it to design a quantum
algorithm whose output is f(x) (with high probability), given access to the input x ∈ X via
queries of the form Ox : |i, b〉 7→ |i, b⊕ xi〉.

The following theorem is due to [12] (see [7] for a version with similar notation).

I Theorem 8. Let U(P, x) = (2ΠkerA−I)(2ΠH(x)−I). Fix X ⊆ {0, 1}N and f : X → {0, 1},
and let P be a span program on {0, 1}N that decides f . Let W+(f, P ) = maxx∈f−1(1) w+(x, P )
and W−(f, P ) = maxx∈f−1(0) w−(x, P ). Then there is a bounded error quantum algorithm
that decides f by making O(

√
W+(f, P )W−(f, P )) calls to U(P, x), and elementary gates.

In particular, this algorithm has quantum query complexity O(
√
W+(f, P )W−(f, P )).

Ref. [7] defines the approximate positive witness size, w̃+(x, P ) as the smallest ‖|w〉‖2

such that A|w〉 = τ and
∥∥ΠH(x)⊥ |w〉

∥∥, rather than being required to be 0, should be as small
as possible. In particular, every x has a finite approximate positive witness size, not only
those in P1.

I Theorem 9 ([7]). Let U(P, x) = (2ΠkerA− I)(2ΠH(x)− I). Fix X ⊆ {0, 1}N and f : X →
R≥0. Let P be a span program on {0, 1}N such that for all x ∈ X, f(x) = w−(x, P ) and
define W̃+ = W̃+(P ) = maxx∈X w̃+(x, P ). Then there is a quantum algorithm that estimates

f to accuracy ε and that uses Õ
(
ε−3/2

√
w−(x)W̃+

)
calls to U(P, x) and elementary gates.
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A span program for st-connectivity

An important example of a span program is one for st-connectivity, first introduced in [10],
and used in [4] to give a new quantum algorithm for st-connectivity. Given some implicit
weighting function c on G, the span program is as follows, which we denote PG:

∀e ∈ E(G), He,1 = span{|u, v, `〉, |v, u, `〉 : e = ({u, v}, `)} U = span{|v〉 : v ∈ V (G)}

∀e = (u, v, `) ∈ −→E (G) : A|u, v, `〉 =
√
c(u, v, `)(|u〉 − |v〉) τ = |s〉 − |t〉 (3)

If s and t are connected in G(x), then a linear combination of weighted st-paths in G(x)
is a positive witness for x. Furthermore, this is the only possible positive witness form,
so x is a positive input for PG if and only if G(x) is st-connected, and in particular,
w+(x, PG) = 1

2Rs,t(G(x)) [4]. Since the weights c(e) are positive, the set of positive inputs
of PG are independent of the choice of c, however, the witness sizes will depend on c.

3 Effective Capacitance and st-connectivity

In [8, Theorem 17], we prove the following theorem, exactly characterizing the negative
witness size of the st-connectivity span program:

I Theorem 10. Let PG be the span program in Eq. (3). Then for any x ∈ {0, 1}N ,
w−(x, PG) = 2Cs,t(G(x)).

Previously, the negative witness size of PG was characterized by the size of a cut [15] or,
in planar graphs, the effective resistance of a graph related to the planar dual of G(x) [9].

As a corollary of Theorem 10, we have the following:

I Theorem 11. Let G be a multigraph with s, t ∈ V (G). Then for any choice of (non-
negative, real-valued) implicit weight function, the bounded error quantum query complexity
of evaluating st-connG,X is

O

(√
max

x∈X:st-connG,X(x)=1
Rs,t(G(x))× max

x∈X:st-connG,D(x)=0
Cs,t(G(x))

)
. (4)

Proof. This follows from Theorem 10 and the fact that w+(x, PG) = 1
2Rs,t(G(x)), proven in

[4] and generalized to the weighted case in [9]. Then Theorem 8 gives the result. J

We emphasize that Theorem 11 holds for Rs,t and Cs,t defined with respect to any weight
function, some of which may give a significantly better complexity for solving this problem.

3.1 Estimating the Capacitance of a Circuit
By Theorem 10, w−(x, PG) = 2Cs,t(G(x)), so we can apply Theorem 9 to estimate Cs,t(G(x)).
By Theorem 9, the complexity of doing this depends on Cs,t(G(x)) and W̃+(PG) =
maxx w̃+(x, PG). We prove the following theorem in [8]:

I Theorem 12. For the span program PG, we have that W̃+(PG) = O(maxp JE(G)(p)), where
the maximum runs over all st-unit flows p that are paths from s to t.

To prove 12, we first relate unit st-flows on G to approximate positive witnesses. Intuitively,
an approximate positive witness is an st-flow on G that has energy as small as possible on
edges in E(G) \ E(G(x)). Thus, we can upper bound the approximate positive witness size

ESA 2018



49:8 Quantum Algorithms for Connectivity and Related Problems

by the highest possible energy of any st-flow on G, which is always achieved by a flow that is
an st-path. Note that when the weights are all 1, maxp JE(G)(p) is just the length of the
longest self-avoiding st-path in G. Combining Theorems 10, 12 and 9, we have:

I Corollary 13. Given a network (G, c), with s, t ∈ V (G) and access to an oracle Ox,
the bounded error quantum query complexity of estimating Cs,t(G(x)) to accuracy ε is
Õ(ε−3/2√Cs,t(G(x)) maxp JE(G)(p)) where the maximum runs over all st-unit flows p that
are paths from s to t.

I Corollary 14. Let U be the cost of implementing |u〉|0〉 7→
∑

(u,v,`)∈−→E (G)

√
c(u,v,`)
dG(u) |u, v, `〉.

Then the quantum time complexity of estimating Cs,t(G(x)) to accuracy ε is

Õ

(
ε−3/2

√
Cs,t(G(x)) max

p
JE(G)(p)U

)
.

Proof. By [9] (generalizing [4]), U(PG, x), from Theorem 9, can be implemented in cost O(U).
J

3.2 Deciding Connectivity
Note that connG,X =

∧
{u,v}:u,v∈V (G) uv-connG,X . Thus connectivity is equivalent [11, 9]

to n(n−1)/2 st-connectivity problems in series, one for each pair of distinct vertices in V (G).
(Ref. [1] uses a similar approach, but only looks at n− 1 instances — the pairs s and v for
each v ∈ V (G). Our approach is symmetrized over the vertices, so the analysis is simpler.)

More precisely, we define a graph G such that:

V (G) = V (G)× {{u, v} : u 6= v ∈ V (G)}, E(G) = E(G)× {{u, v} : u 6= v ∈ V (G)} (5)

where × denotes the Cartesian product. We think of the {u, v} terms in (5) as an extra
label denoting that that edge or vertex is in the {u, v}th copy of the graph G present as a
subgraph in G. Choose any labeling of the vertices from 1 to n (with slight abuse of notation,
we use u both for the original vertex name and the label). We then label the vertex (1, {1, 2})
as s and the vertex (n, {n− 1, n}) as t. Next identify vertices (v, {u, v}) and (u, {u, v + 1})
if u < v and v < n, and identify vertices (v, {u, v}) and (u+ 1, {u+ 1, u+ 2}) if v = n and
u < n− 1. See [8] for a graphical example of this construction.

Finally, we define G(x) to be the subgraph of G with edges E(G(x)) = E(G(x))×{{u, v} :
u 6= v ∈ V (G)}. Clearly, any st-path in G(x) must go through each of the copies of G(x),
meaning it must include, for each {u, v}, a uv-path through the copy of G(x) labeled {u, v}.
Thus, there is an st-path in G(x) if and only if G(x) is connected.

We consider the span program PG , where c(e) = 1 for all e ∈ E(G). We will use PG to
solve st-connectivity on G(x). To analyze the resulting algorithm, we need to upper bound the
negative and positive witness sizes w−(x, PG) = 2Cs,t(G(x)) and w+(x, PG) = 1

2Rs,t(G(x)).
Using the rule that resistances in series add, we get:

I Lemma 15. For any x such that G(x) is connected, w+(x, PG) = n(n−1)
2 Ravg(G(x)).

In [8, Lemma 24], we bound Cs,t(G(x)), to prove the following:

I Lemma 16. Fix κ > 1, and suppose G(x) has κ connected components. Then if G is a
subgraph of a complete graph (that is, G has at most one edge between any pair of vertices),
we have w−(x, PG) = O(1/κ). Otherwise, we have w−(x, PG) = O(dmax(G)/

√
nκ).
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Combining Lemmas 16 and 15 with Theorem 8, we have the following:

I Theorem 17. For any family of graphs G such that G is a subgraph of a complete graph,
and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x) is connected, Ravg(G(x)) ≤ R, and
if G(x) is not connected, it has at least κ components, the bounded error quantum query
complexity of connG,X is O

(
n
√
R/κ

)
.

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x)
is connected, Ravg(G(x)) ≤ R, and if G(x) is not connected, it has at least κ components,
the bounded error quantum query complexity of connG,X is O

(
n3/4

√
Rdmax(G)/κ1/4

)
.

I Corollary 18. Let U be the cost of implementing |u〉|0〉 7→
∑

(u,v,`)∈−→E (G)

√
d−1
G (u)|u, v, `〉.

If G is subset of a complete graph, the quantum time complexity of connG,X is O(n
√
R/κU).

For any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, if G(x) is
connected, Ravg(G(x)) ≤ R, and if G(x) is not connected, it has at least κ components, the
quantum time complexity of connG,X is O

(
n3/4

√
Rdmax(G)/κ1/4U

)
.

Proof. By [9] (generalizing [4]), U(PG , x) can be implemented in cost O(U). J

4 Spectral Algorithm for Deciding Connectivity

In this section, we give alternative quantum algorithms for connectivity. We first present an
algorithmic template, outlined in Algorithm 25, that requires the instantiation of a certain
initial state. Since this initial state is independent of the input, we already get an upper
bound on the quantum query complexity, as follows:

I Corollary 19. Fix any λ > 0 and κ > 1. For any family of connected graphs G and
X ⊆ {0, 1}E(G) such that for all x ∈ X, either λ2(G(x)) ≥ λ or G(x) has at least κ connected

components, the bounded error quantum query complexity of connG,X is O
(√

ndmax(G)
κλ

)
.

In [8, Section 5.1], we describe one such initial state, and how to prepare it, leading to
the following upper bound, in which U is the cost of performing one step of a quantum
walk on G, and S is the cost of preparing a quantum state corresponding to the stationary
distribution of a quantum walk on G:

I Theorem 20. Fix any κ > 1 and λ > 0. For any family of connected graphs G and
X ⊆ {0, 1}E(G) such that ∀x ∈ X, either λ2(G(x)) ≥ λ, or G(x) has at least κ components,

connG,X can be solved in bounded error in time Õ
(√

ndavg(G)
κλ2(G)

(
S +

√
dmax(G)

λ U
))

.

In [8, Section 5.2], we restrict our attention to the case where G is a Cayley graph, and
give an alternative instantiation of Algorithm 25, proving the following, where Λ is the cost
of computing the eigenvalues of G:

I Theorem 21. Fix any λ > 0 and integer κ > 1. For any family of connected graphs G
such that each G is a Cayley graph over an Abelian group and X ⊆ {0, 1}E(G) such that for
all x ∈ X, either λ2(G(x)) ≥ λ or G(x) has at least κ components, connG,X can be solved

in bounded error in time Õ
(√

nd
κλU +

√
nd

κλ2(G) Λ
)
.
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The results in this section, in contrast to the previous connectivity algorithm, apply with
respect to any weighting of the edges of G. Applying non-zero weights to the edges of G
does not change which subgraphs G(x) are connected, but it does impact the complexity
of our algorithm. Thus, we get algorithms with the complexities given in Corollary 19 and
Theorems 20 and 21, where dmax(G) and davg(G) are in terms of weighted degrees, and λ2(G)
and λ2(G(x)) are in terms of weighted Laplacians.

Finally, in 4.1, we describe how when G is a complete graph, these ideas can be used to
design algorithms, not only for deciding connectivity, but also for estimating the algebraic
connectivity of a graph, a measure of how connected a graph is. In particular, we show:

I Theorem 22. Let G be the complete graph on n vertices. There exists a quantum al-
gorithm that, on input x, with probability at least 2/3, outputs an estimate λ̃ such that∣∣λ̃− λ2(G(x))

∣∣ ≤ ελ2(G(x)), where λ2(G(x)) is the algebraic connectivity of G(x), in com-
plexity Õ

(
n/ε
√
λ2(G(x))

)
.

Let PG = (H,U,A, τ) be the span program for st-connectivity defined in 3. Note that
only τ depends on s and t, and we will not be interested in τ here. We let A(x) = AΠH(x).
A simple calculation gives A(x)A(x)T = 2LG(x) and AAT = 2LG, where LG(x) and LG are
the Laplacians of G(x) and G respectively. Recall that for any G, the eigenvalues of LG lie
in [0, dmax], with |µ〉 = 1√

n

∑
v |v〉 as a 0-eigenvalue. In our case, since G is assumed to be

connected, |µ〉 is the only 0-eigenvector of LG, so row(LG) is the orthogonal complement
of |µ〉. For any x, G(x) also has |µ〉 as a 0-eigenvalue, but if G(x) is connected, this is the
only 0-eigenvalue. In general, the dimension of the 0-eigenspace of LG(x) is the number of
components of G(x). Thus, we have the following.

The multiset of nonzero eigenvalues of LG are exactly half of the squared singular values
of A, and in particular, since no eigenvalue of LG can be larger than the maximum degree
of G, σmax(A) ≤

√
2dmax(G).

The multiset of nonzero eigenvalues of LG(x) are exactly half the squared singular values
of A(x), and if G(x) is connected, then σmin(A(x)) =

√
2λ2(G(x)), where λ2(G(x)) is the

second smallest eigenvalue of LG(x), which is non-zero if and only if G(x) is connected.
The support of LG is col(A), which is the orthogonal subspace of |µ〉 = 1√

n

∑
v |v〉.

For a particular span program P , and input x, an associated unitary U(P, x) = (2ΠkerA−
I)(2ΠH(x)−I) can be used to construct quantum algorithms, for example, for deciding the span
program. Then by [7, Theorem 3.10], which states that ∆(U(P, x)) ≥ 2σmin(A(x))/σmax(A),
we have the following.

I Lemma 23. Let PG be the st-connectivity span program from 3. Then ∆(U(P, x)) ≥
2
√
λ2(G(x))/dmax(G).

Our algorithm will be based on the following connection between the connectivity of G(x)
and the presence of a 0-phase eigenvector of U(P, x) in row(A), proven in [8, Lemma 32].

I Lemma 24. G(x) is not connected if and only if there exists |ψ〉 ∈ row(A) that is fixed
by U(P, x). Moreover, if G(x) has κ > 1 components, there exists a (κ − 1)-dimensional
subspace of row(A) that is fixed by U(P, x).

Thus, to determine ifG(x) is connected, it is sufficient to detect the presence of any 0-phase
eigenvector of U(P, x) on row(A). Let {|ψi〉}n−1

i=1 be any basis for row(A), not necessarily
orthogonal, and suppose we have access to an operation that generates |ψinit〉 =

∑n−1
i=1 |i〉|ψi〉.

Such a basis is independent of the input, so we can certainly perform such a map with 0
queries. We will later discuss cases in which we can implement such a map time efficiently.
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I Algorithm 25. Assume there is a known constant λ such that if G(x) is connected,
then λ2(G(x)) ≥ λ. Let {|ψi〉}i be some states that span the rowspace of A, whose choice
determines the cost of the amplitude estimation step.
1. Prepare |ψinit〉 =

∑n−1
i=1

1√
n−1 |i〉|ψi〉.

2. Perform the phase estimation procedure of [8, Theorem 9] of U(P, x) on the second
register, to precision

√
λ/dmax(G), and accuracy ε.

3. Use amplitude estimation to determine if the amplitude on |0〉 in the phase register is 0,
in which case, output “connected”, or > 0, in which case, output “not connected.”

The algorithm performs phase estimation (see [8, Theorem 8]) on the second register
of |ψinit〉, with precision

√
λ/dmax(G). Intuitively, this will distinguish any part of the

second register that is in the 0-phase space of U(P, x), labeling it with |0〉 in a new phase
register, from any part of the state that is in the span of the θ-phase vectors of U(P, x) for
|θ| >

√
λ/dmax(G). We can then estimate the part of the state in the 0-phase space of U(P, x)

by using amplitude estimation in Step 3. First, suppose that there are κ− 1 > 0 orthonormal
0-phase eigenvectors of U(P, x) in row(A), and let Π be the orthonormal projector onto
their span. By [8, Theorem 8], for each i, the phase estimation step will map |i〉 (Π|ψi〉) to
|i〉|0〉 (Π|ψi〉). Thus, the squared amplitude on |0〉 in the phase register will be at least:

ε := ‖(I ⊗Π)|ψinit〉‖2

‖|ψinit〉‖2
= 1
‖|ψinit〉‖2

n−1∑
i=1
‖Π|ψi〉‖2 > 0, (6)

since the |ψi〉 span row(A).
On the other hand, suppose G(x) is connected, so there is no 0-phase eigenvector in

row(A). Then all phases will be at least ∆(U(P, x)) ≥
√
λ/dmax(G), so the phase register will

have squared overlap at most ε with |0〉. Setting ε = ε/2, we just need to distinguish between
an amplitude of ≥ ε and an amplitude of ≤ ε/2 on |0〉, which we can do using amplitude
estimation in 1√

ε
calls to Steps 1 and 2 (See [8] for details). Step 2 can be implemented using√

dmax(G)/λ log 1
ε calls to U(P, x). By [9, Theorem 13], if U is the cost of implementing, for

any u ∈ V , the map

|u, 0〉 7→
∑

(v,`)∈Γ(u)

√
c(u, v, `)/dG(u)|u, v, `〉, (7)

which corresponds to one step of a quantum walk on G, then U(P, x) can be implemented in
time O(U). We thus get the following (formally proven in [8, Theorem 34]):

I Theorem 26. Fix λ > 0. Let Init denote the cost of generating the initial state |ψinit〉,
and U the cost of the quantum walk step in equation 7. Let ε be as in equation 6. Then
for any family of connected graphs G and X ⊆ {0, 1}E(G) such that for all x ∈ X, either
λ2(G(x)) ≥ λ or G(x) is not connected, connG,X can be decided by a quantum algorithm

with cost O
(

1√
ε

(
Init +

√
dmax(G)

λ U log 1
ε

))
.

In [8, Sections 5.1 and 5.2 ], we discuss particular implementations of this algorithm, but
if we only care about query complexity, we already have Corollary 19. We formally prove
Corollary 19 in [8], but the idea is that Init costs 0 queries, U(P, x) can be implemented in 2
queries, and if there are κ− 1 orthonormal 0-phase vectors of U(P, x) in row(A), they each
contribute at least 1

n−1 to ε = ‖(I ⊗Π)|ψinit〉‖2, so ε ≥ κ−1
n−1 , giving a total query complexity

of O(
√
ndmax(G)(κλ)−1).
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4.1 Estimating the connectivity when G is a complete graph
For the remainder of this section, let G be the complete graph on n vertices, Kn. In that
case, we can not only decide if G(x) is connected, but estimate λ2(G(x)). The idea is to
relate the smallest phase of U(P, x) on row(A) to λ2(G(x)), and estimate this value using
quantum phase estimation. We use a correspondence between the phases of the product of
two reflections U = (2ΠA − I)(2ΠB − 1) and the singular values of its discriminant, defined
ΠAΠB due to Szegedy [16] to prove the following in [8, Section 5.3].

I Lemma 27. Let U = (2ΠA − I)(2ΠB − I) and D = ΠAΠB be its discriminant. Then
∆(−U) = 2 sin−1(σmin(D)). Moreover, when G is a complete graph on n vertices, we have
for any x, λ2(G(x)) = n sin2(∆(U(P, x))/2).

This correspondence also implies the following, which allows us to restrict our attention
to row(A) in searching for the smallest phase of U(P, x) and is proven in [8, Section 5.3]:

I Lemma 28. Let U = (2ΠA − I)(2ΠB − I), and let |∆+〉 be a ∆(U)-eigenvector of U , and
|∆−〉 a (−∆(U))-eigenvector of U . Then there exists a vector |u〉 in the support of A such
that |u〉 ∈ span{|∆+〉, |∆−〉}. In particular, if |∆±〉 are ±∆(U(P, x))-eigenvectors of U(P, x),
then there exists a vector |u〉 in row(A) such that |u〉 ∈ span{|∆+〉, |∆−〉}.

We will estimate the value τ = ∆(U(P, x))/π in the range [0, 1], which we will then
transform into an estimate of λ2(G(x)). At every iteration, c will denote a lower bound for τ
and C will denote the current upper bound. At the beginning of the algorithm we have c = 0,
C = 1, and every iteration will result in updating either C or c in such a manner that the
new interval for τ is reduce by a fraction of 2/3. The algorithm is described in Algorithm 29.

I Algorithm 29. To begin, let c = 0 and C = 1.
1. Set ϕ = C−c

3 , ε = 1√
2n , δ = c+ ϕ.

2. For j = 1, . . . , 4 log(n/ε):
a. Prepare

∑n−1
i=1

1√
n−1 |i〉|ψi〉|0〉B |0〉P .

b. Perform the gapped phase estimation algorithm GPE(ϕ, ε, δ) of [8, Theorem 9] to
U(P, x) on the second register.

c. Use amplitude estimation to distinguish between the case when the amplitude on |0〉B
is ≥ 1√

n
, in which case output “aj = 0”, and the case where the ampltiude is ≤ 1√

2n ,
in which case, output “aj = 1”.

3. Compute ã = Maj(a1, . . . , a4 log(n/ε)). If the result is 0, set C = δ + ϕ. If the result is 1,
set c = δ. If C − c ≤ 2εc, then output n sin2

(
π(C+c)

4

)
. Otherwise, return to Step 1.

We say an iteration of the algorithm succeeds if ã = Maj(a1, . . . , a4 log(n/ε)) correctly indicates
whether the amplitude on |0〉B is ≥ n−1/2 or ≤ (2n)−1/2. This happens with probability Ω(1−
(ε/n)4). Since we will shortly see that the algorithm runs for at most Õ(n/ε

√
λ2(G(x))) ≤

Õ
(
n2ε−1) steps, a Taylor series approximation guarantees that the probability that every

iteration succeeds is at least Ω
(
1− (ε/n)2). It is therefore reasonable to assume that every

iteration succeeds, since this happens with high probability. We first note that if every
iteration succeeds, throughout the algorithm we have τ = ∆(U(P, x))/π ∈ [c, C].

I Lemma 30. Let τ = ∆(U(P, x))/π. For any ϕ and δ, if τ ≥ δ + ϕ, applying GPE(ϕ, ε, δ)
to |ψinit〉 results in a state with amplitude at most 1√

2n on |0〉B in register B; and if τ ≤ δ,
this results in a state with amplitude at least 1√

n
on |0〉B in register B. Thus, if every

iteration succeeds, at every iteration, we have τ ∈ [c, C].

The proof of Lemma 30 is found in [8, Section 5.3]. Next, we analyze the running time of
Algorithm 29 to get the following theorem, also proven in [8, Section 5.3].
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I Theorem 31. With probability Ω(1 − (ε/n)2), Algorithm 29 will terminate after time
Õ(n/ε

√
λ2(G(x))).

Finally, we prove in [8, Section 5.3] that the algorithm outputs an estimate that is within
ε multiplicative error of λ2(G(x)). Theorem 22 follows from Theorems 31 and 32.

I Theorem 32. With probability at least Ω(1− (ε/n)2), Algorithm 29 outputs an estimate λ̃
such that

∣∣λ2(G(x))− λ̃
∣∣ ≤ π23

4 ελ2(G(x)).
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