804 research outputs found

    Quantisations of piecewise affine maps on the torus and their quantum limits

    Full text link
    For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measures of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking

    An algebraic interpretation of the Wheeler-DeWitt equation

    Get PDF
    We make a direct connection between the construction of three dimensional topological state sums from tensor categories and three dimensional quantum gravity by noting that the discrete version of the Wheeler-DeWitt equation is exactly the pentagon for the associator of the tensor category, the Biedenharn-Elliott identity. A crucial role is played by an asymptotic formula relating 6j-symbols to rotation matrices given by Edmonds.Comment: 10 pages, amstex, uses epsf.tex. New version has improved presentatio

    The Hamiltonian Formulation of Higher Order Dynamical Systems

    Get PDF
    Using Dirac's approach to constrained dynamics, the Hamiltonian formulation of regular higher order Lagrangians is developed. The conventional description of such systems due to Ostrogradsky is recovered. However, unlike the latter, the present analysis yields in a transparent manner the local structure of the associated phase space and its local sympletic geometry, and is of direct application to {\em constrained\/} higher order Lagrangian systems which are beyond the scope of Ostrogradsky's approach.Comment: 17 pages. Revised: references adde

    Quantum curves and topological recursion

    Full text link
    This is a survey article describing the relationship between quantum curves and topological recursion. A quantum curve is a Schr\"odinger operator-like noncommutative analogue of a plane curve which encodes (quantum) enumerative invariants in a new and interesting way. The Schr\"odinger operator annihilates a wave function which can be constructed using the WKB method, and conjecturally constructed in a rather different way via topological recursion.Comment: This article arose out of the Banff workshop Quantum Curves and Quantum Knot Invariants. Comments welcome. 20 pages, 1 figur

    Correlation functions of twist fields from Ward identities in the massive Dirac theory

    Full text link
    We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.Comment: 31 page

    Open problems, questions, and challenges in finite-dimensional integrable systems

    Get PDF
    The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference “Finite-dimensional Integrable Systems, FDIS 2017” held at CRM, Barcelona in July 2017.Postprint (updated version
    • …
    corecore