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Abstract

Using Dirac’s approach to constrained dynamics, the Hamiltonian formu-
lation of regular higher order Lagrangians is developed. The conventional
description of such systems due to Ostrogradsky is recovered. However, un-
like the latter, the present analysis yields in a transparent manner the local
structure of the associated phase space and its local sympletic geometry, and
is of direct application to constrained higher order Lagrangian systems which
are beyond the scope of Ostrogradsky’s approach.
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1 Introduction

Canonical and path integral quantisations of systems whose dynamics is de-
scribed by higher order Lagrangians—namely by Lagrangians involving time
derivatives of the degrees of freedom of order at least two—is an issue which
by far has not been developed to the same extent1 as for systems whose
Lagrangian only depends on the coordinates and their velocities[2]. Never-
theless, there do exist systems of physical interest described by such higher
order Lagrangians, the most popular examples being perhaps higher order
regularisations of quantum gauge field theories and so-called rigid strings[4, 5]
or rigid particles[6]. In fact, these examples involve the additional compli-
cation that they possess local symmetries, leading therefore to constraints
generating these gauge invariances on phase space.

As is well known, there does exist a generalisation of the ordinary Hamil-
tonian formulation in the case of higher order Lagrangians, which is due
to Ostrogradsky[7]. However, on the one hand, Ostrogradsky’s approach is
implicitly restricted to non constrained systems—which in particular do not
possess local gauge invariances—, thus rendering this approach inapplicable
to most, if not all physical systems of present fundamental interest. On the
other hand, in Ostrogradsky’s construction the structure of phase space and
in particular of its local symplectic geometry is not immediately transparent,
an obvious source of possible confusion when considering canonical or path
integral quantisations of such systems.

This note discusses how both problems can be resolved within the well es-
tablished context of constrained systems[2] described by Lagrangians depend-
ing on coordinates and velocities only. Well known and powerful techniques
become then immediately available, rendering the necessity of a separate dis-
cussion of the quantisation of higher order systems—including constrained
ones, and thus in particular their BRST quantisation—void of any justifica-
tion. Any higher order system can always be cast in the form of an ordinary
constrained system, namely one whose Lagrangian is a function only of first
order time derivatives of the degrees of freedom, but not of time derivatives
of higher order.

That such a reduction of higher order Lagrangians is possible was indi-

1The classical analysis of such higher order regular or singular systems is available to
some extent in the recent literature[1].
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cated already previously[8, 9]. As should be clear, it suffices for this purpose
to introduce auxiliary degrees of freedom associated to each of the succes-
sive time derivatives of the original coordinates of the system. In effect, the
canonical quantisation of rigid particles has already used[6] the same idea,
thus in a situation where Ostrogradsky’s approach is not applicable as such.

The present note is organised as follows. In the next section, Ostrograd-
sky’s construction is briefly considered. Sect.3 describes how any higher order
Lagrangian system can be cast into the form of a constrained system whose
Lagrangian involves only first order time derivatives of the degrees of free-
dom. The canonical Hamiltonian description of the auxiliary system is then
addressed in Sect.4 while its equivalence with Ostrogradsky’s formulation is
established in Sect.5. Further comments are presented in the Conclusion.

2 Ostrogradsky’s Construction

Let us consider a system with degrees of freedom xn(t) (n = 1, 2, · · ·), t

being the time evolution parameter of the system. Although the present
analysis assumes that these coordinates are commuting variables, and that
the index n takes a finite or an infinite number of discrete values, it should
be clear that exactly the same considerations and the same conclusions as
those developed hereafter are applicable to commuting and anticommuting
degrees of freedom, as well as to an infinite non countable set of coordinates.
The former case is that of bosonic and fermionic types of degrees of freedom,
and the latter typically that of field theories. All the conclusions established
in the present note are thus valid in complete generality , for any system
described by some higher order Lagrangian. The restriction to a discrete
set of commuting degrees of freedom is only one of ease of presentation.
Moreover, in a first reading of the paper it might be useful to consider the
case of only one degree of freedom[8], namely ignore the index n altogether.

These remarks having been made, let us assume that the dynamical time
evolution of the system is determined from the variational principle being ap-
plied to the action functional associated to some time independent Lagrange
function

L0

(

xn, ẋn, ẍn, · · · , x
(mn)
n

)

. (1)

Here, (mn ≥ 1) (n = 1, 2, · · ·) is the maximal order of all time derivatives of
the coordinate xn (n = 1, 2, · · ·) appearing in the Lagrangian. In particular,

2



the discussion of this paper includes the familiar case when (mn = 1) for
all degrees of freedom. Throughout the analysis, it might be interesting to
consider the special case (mn = 1) (n = 1, 2, · · ·) to see how well-known
results are recovered from the present general situation.

Note that the Lagrange function is assumed to depend on at least the first
order time derivative of each degree of freedom xn. Otherwise, one would
have to deal with some of the equations of motion being actually constraints,
a situation not considered by Ostrogradsky. Moreover, the restriction to time
independent Lagrange functions is again for reasons of convenience rather
than of principle. Time dependent higher order Lagrangians can also be
analysed along the same lines as developed hereafter.

Considering the variational principle, it is clear that the Euler-Lagrange
equations of motion of the system are given by

mn
∑

kn=0

(−1)kn

(

d

dt

)kn

∂L0

∂x
(kn)
n

= 0 , n = 1, 2, · · · . (2)

Following Ostrogradsky’s lead[7] and in order to simplify the expression of
these equations, let us introduce quantities pn,αn

(αn = 0, 1, · · · , mn − 1)
defined recursively by

pn,in−1 =
∂L0

∂x
(in)
n

−
d

dt
pn,in , in = 1, 2, · · · , mn − 1 , (3)

with the initial value

pn,mn−1 =
∂L0

∂x
(mn)
n

. (4)

The Euler-Lagrange equations of motion in (2) take then the simpler compact
form

∂L0

∂xn

−
d

dt
pn,0 = 0 , n = 1, 2, · · · , (5)

which are very suggestive of Hamiltonian equations of motion. Note how
these expressions generalise the familiar standard definitions in the case when
(mn = 1) for all degrees of freedom xn (n = 1, 2, · · ·).

In order to reveal a possible Hamitonian description in the general case
when the integers mn take arbitrary finite values, it is useful to consider
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the differential of the Lagrange function L0, in which the definitions of the
variables pn,αn

are included. A little calculation then leads to the identity,

d





∑

n

mn−1
∑

αn=0

x(αn+1)
n pn,αn

− L0



 =

=
∑

n

mn−1
∑

αn=0

[

x(αn+1)
n dpn,αn

− dx(αn)
n ṗn,αn

]

−
∑

n

dxn

[

∂L0

∂xn

− ṗn,0

]

. (6)

Note that the last sum in the r.h.s. of this expression is a combination of the
Euler-Lagrange equations of motion of the system.

The meaning of this result is as follows. Consider the quantity defined by

H =
∑

n

mn−1
∑

αn=0

ẋ(αn)
n pn,αn

− L0 , (7)

with the variables pn,αn
determined by the recursion relations in (3) and (4).

Since these variables involve the coordinates xn and their time derivatives
up to a certain order which is different for each of the coordinates xn and
each of the variables pn,αn

, so would a priori the quantity H given in (7).
However, the identity (6) establishes that this dependence is in fact rather
specific, namely only through a dependence of the variables x(αn)

n and pn,αn

(αn = 0, 1, · · · , mn − 1) themselves,

H
(

x(αn)
n , pn,αn

)

, αn = 0, 1, · · · , mn − 1 . (8)

Note that this conclusion is valid irrespective of whether the Lagrangian
L0

(

xn, ẋn, · · · , x(mn)
n

)

leads to constraints or not.

The identity (6) also shows that the Euler-Lagrange equations of motion
(2) are equivalent to the set of equations

ẋ(αn)
n =

∂H

∂pn,αn

, ṗn,αn
= −

∂H

∂x
(αn)
n

, αn = 0, 1, · · · , mn − 1 . (9)

In other words, the system of higher order Lagrangian L0 has been cast in
Hamiltonian form, with the variables

(

x(αn)
n , pn,mn

)

being canonically conju-
gate pairs. Let us thus recapitulate.
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Given the Lagrange function L0

(

xn, ẋn, · · · , x
(mn)
n

)

, first one introduces
the conjugate momenta pn,mn−1 defined by

pn,mn−1 =
∂L0

∂x
(mn)
n

(

xn, ẋn, · · · , x(mn)
n

)

. (10)

Regarding the variables
(

xn, ẋn, · · · , x(mn−1)
n

)

as independent, the relations

(10) may be inverted to give

x(mn)
n = ẋ(mn−1)

n = ẋ(mn−1)
n

(

xn, ẋn, · · · , x
(mn−1)
n , pn,mn

)

. (11)

The remaining conjugate momenta pn,in−1 (in = 1, 2, · · · , mn − 1) are then
determined by the recursion relations in (3). However, these relations are not
used in order to express the variables ẋ(in−1)

n (in = 1, 2, · · · , mn − 1) in terms
of (xn, ẋn, · · · , x(in−1)

n ), the conjugate momenta (pn,in, · · · , pn,mn−1) and time
derivatives of the latter. Indeed in Ostrogradsky’s construction, the variables
(xn, ẋn, · · · , x(mn−1)

n ) have to be considered as being independent . We shall
come back to this point shortly.

Once the expressions for the quantities ẋ(mn−1)
n determined as in (11), the

canonical Hamiltonian of the system is defined by (7), or equivalently,

H(x(αn)
n , pn,αn

) =

= ẋ(mn−1)
n pn,mn−1 − L0

(

xn, ẋn, · · · , ẋ(mn−1)
n

)

+
∑

n

mn−1
∑

in=1

x(in)
n pn,in−1 , (12)

in which only the substitutions for the variables ẋ(mn−1)
n are performed, while

the degrees of freedom x(αn)
n and pn,αn

(αn = 0, 1, · · · , mn − 1) are considered
as being independent.

Finally, the Hamiltonian equations of motion are given by (9). Introduc-
ing the fundamental Poisson brackets,
{

x(αn)
n , x(αm)

m

}

= 0 ,
{

x(αn)
n , pm,αm

}

= δnmδαnαm
, {pn,αn

, pm,αm
} = 0 , (13)

with (αn = 0, 1, · · · , mn − 1) and (αm = 0, 1, · · · , mm − 1) (n, m = 1, 2, · · ·),
the equations (9) take the Hamiltonian form

ẋ(αn)
n =

{

x(αn)
n , H

}

, ṗn,αn
= {pn,αn

, H} , αn = 0, 1, · · · , mn − 1 . (14)

5



In other words, the variables
(

x(αn)
n , pn,αn

)

(αn = 0, 1, · · · , mn − 1) are pairs
of conjugate degrees of freedom, thus defining the phase space of the system
and its local symplectic structure.

Obviously, certain comments are in order. It is clear that Ostrogradsky’s
construction is applicable only to those higher order Lagrangians for which
the inversions required in the determination of the quantities ẋ(mn−1)

n are
non degenerate. Namely, the Lagrangian L0 cannot lead to constraints of
any kind. Constrained higher order Lagrangians are beyond the scope of
Ostrogradsky’s approach.

Another issue with the present construction is the risk of confusion which
arises when dealing with the variables x(αn)

n and their first order time deriva-
tives ẋ(αn)

n (αn = 0, 1, · · · , mn − 1), a situation which becomes even the more
acute when considering canonical or path integral quantisations of such sys-
tems. As emphasized above, only the first order time derivatives of the
variables x(mn−1)

n are to be solved for in terms of the conjugate momenta
pn,mn−1 and the variables x(αn)

n (αn = 0, 1, · · · , mn − 1), the latter considered
to be independent of one another rather than being simply time derivatives
of order αn of the coordinates xn. It is in this manner only that the canonical
Hamiltonian defined in (12) can be made a function of the pairs of conjugate
degrees of freedom (x(αn)

n , pn,αn
). To illustrate the possible confusion which

might arise when this point is not fully appreciated, the reader is invited to
consider a simple example in the case of a single degree of freedom x(t), such
as,

L0(x, ẋ, ẍ) =
1

2
axẍ2 −

1

2
bxẋ2 , (15)

with a and b being arbitrary constant parameters. If one attempts solving
both for ẍ and for ẋ in terms of x and p0 and p1, there appear in the canon-
ical Hamiltonian time derivative terms of the conjugate momentum p1! It is
thus important to develop Ostrogradsky’s construction precisely in the man-
ner emphasized above, keeping the variables x and ẋ as independent, and
inverting only for ẍ in terms of x, ẋ and p1.

Nevertheless, when solving the Hamiltonian equations of motion (14) for
the degrees of freedom xn(t), it becomes necessary, after having computed the
Poisson brackets , to impose the condition that the variables x(in)

n are time
derivatives of order in (in = 1, 2, · · · , mn − 1) of the coordinates xn(t).

It is clear that both issues are solved at once by emphasizing explicitly
the fact that in the Hamiltonian approach—hence also when considering
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canonical and path integral quantisations of such systems—, all variables
x(αn)

n are to be considered as being independent . This is readily achieved by
introducing independent auxiliary degrees of freedom, each corresponding to
a time derivative of a given order of one of the original degrees of freedom.
The same system can then be described in terms of an extended Lagrangian
including a dependence on the auxiliary degrees of freedom, such that time
derivatives of first order only are involved. In this manner, one is brought
back[8, 9] into the realm of the usual type of dynamical systems for which
most powerful techniques are available, with the additional advantage that
constrained higher order Lagrangians do not need to be considered on a
separate basis any longer.

3 The Auxiliary Lagrangian

Given a system of degrees of freedom xn(t) (n = 1, 2, · · ·) with Lagrange
function L0(xn, ẋn, · · · , x(mn)

n ) (mn ≥ 1)—be it regular or not—, let us intro-
duce new independent variables qn,αn

(t) (αn = 0, 1, · · · , mn−1) such that the
following recursion relations would hold,

qn,in = q̇n,in−1 , in = 1, 2, · · · , mn − 1 , (16)

with the initial value
qn,0 = xn . (17)

Clearly, the variables qn,in (in = 1, 2, · · · , mn − 1) would then correspond to
the time derivatives x(in)

n of order in of the coordinates xn, the latter being
identical to the coordinates qn,0.

In order to inforce the relations (16) and (17) for the independent variables
qn,αn

, additional Lagrange multipliers µn,in(t) (in = 1, 2, · · · , mn − 1) are
introduced. The variables (qn,αn

, µn,in) thus determine the set of independent
degrees of freedom of the extended Lagrangian system, with (qn,in, µn,in)
(in = 1, 2, · · · , mn − 1) being auxiliary degrees of freedom as compared to
the original coordinates (xn(t) = qn,0(t)). The auxiliary Lagrange function of
this extended description of the system is given by

L(qn,αn
, q̇n,αn

, µn,in) =

= L0(qn,0, qn,1, · · · , qn,mn−1, q̇n,mn−1) +
∑

n

mn−1
∑

in=1

(qn,in − q̇n,in−1)µn,in . (18)

7



Note that as advertised, the auxiliary Lagrangian L involves only first order
time derivatives of the extended set of degrees of freedom. Obviously, due
to the presence of the Lagrange multipliers µn,in, the Lagrange function L

in (18) defines a constrained system, to which the usual analysis[10, 2] of
constrained dynamics is applicable.

Before turning to that important issue however, let us first establish the
equivalence of the auxiliary Lagrangian with the original formulation of the
system determined by the Lagrangian L0. Applied to L in (18), the varia-
tional principle leads to the following equations of motion for the Lagrange
multipliers µn,in,

qn,in = q̇n,in−1 , in = 1, 2, · · · , mn − 1 , (19)

while for the degrees of freedom qn,in (in = 1, 2, · · · , mn − 1), one obtains,

µn,jn
= −

∂L0

∂qn,jn

−
d

dt
µn,jn+1 , jn = 1, 2, · · · , mn − 2 , (20)

and

µn,mn−1 = −
∂L0

∂qn,mn−1
+

d

dt

∂L0

∂q̇n,mn−1
. (21)

Finally, the equations of motion for qn,0 are

∂L0

∂qn,0
+ µ̇n,1 = 0 . (22)

Note that the latter equations are in fact the actual equations of motion
of the system. Indeed, all the other equations for qn,in and µn,in are constraint
equations which determine the auxiliary degrees of freedom qn,in in terms of
successive time derivatives of the original coordinates (qn,0 = xn), as well as
the Lagrange multipliers µn,in in terms of successive partial derivatives of the
Lagrange function L0. By substitution in (22) of the successive definitions
of the Lagrange multipliers µn,in, the equations of motion for qn,0 reduce to

mn−1
∑

αn=0

(−1)αn

(

d

dt

)αn

∂L0

∂qn,αn

+ (−1)mn

(

d

dt

)mn

∂L0

∂q̇n,mn−1

= 0 . (23)

Upon the substitution of the recursion relations (19), one then indeed recovers
the original Euler-Lagrange equations of motion in (2). Hence, the complete
equivalence between the auxiliary formulation of the system and the original
one based on the higher order Lagrange function L0

(

xn, ẋn, · · · , x
(mn)
n

)

is
established.

8



4 The Hamiltonian Formulation

Given the auxiliary Lagrangian formulation of higher order systems of the
previous section, let us apply to it the ordinary analysis[2] of constraints
in order to develop its Hamiltonian description. The momenta canonically
conjugate to the degrees of freedom qn,αn

(αn = 0, 1, · · · , mn − 1) and µn,in

(in = 1, , 2 · · · , mn − 1) are of course defined by, respectively,

pn,αn
=

∂L

∂q̇n,αn

, πn,in =
∂L

∂µ̇n,in

. (24)

However, the phase space degrees of freedom (qn,αn
, pn,αn

; µn,in, πn,in) are
not all independent. In fact, the system possesses the following primary
constraints,

Φn,in = 0 , πn,in = 0 , in = 1, 2, · · · , mn − 1 , (25)

where
Φn,in ≡ pn,in−1 + µn,in , in = 1, 2, · · · , mn − 1 . (26)

Both sets of primary constraints follow from the particular way in which the
auxiliary degrees of freedom are introduced in the definition of the extended
Lagrange function L in (18). The primary constraints obey the algebra of
Poisson brackets

{Φn,in , Φm,im} = 0 , {Φn,in, πm,im} = δnmδinim , {πn,in , πm,im} = 0 , (27)

with (in = 1, 2, · · · , mn − 1) and (im = 1, 2, · · · , mm − 1) (n, m = 1, 2, · · ·),
showing therefore already at this stage that the primary constraints are cer-
tainly also second class constraints.

Among all conjugate momenta, pn,mn−1 certainly play a distinguished role
since on the one hand, they are the only ones not involved in any of the pri-
mary constraints above, and on the other hand, their conjugate coordinates
qn,mn−1 are the only variables whose first order time derivatives do appear in
the original Lagrange function L0. Indeed, we have

pn,mn−1 =
∂L0

∂q̇n,mn−1
(qn,0, qn,1, · · · , qn,mn−1, q̇n,mn−1) . (28)

9



As in Ostrogradsky’s approach, let us then assume that for fixed values of
qn,αn

(α = 0, 1, · · · , mn − 1), these relations are invertible, leading therefore
to the velocities,

q̇n,mn−1 = q̇n,mn−1 (qn,αn
, pn,mn−1) . (29)

In other words, given fixed values for qn,in−1 (in = 1, 2, · · · , mn − 1), the
dynamical system of degrees of freedom qn,mn−1 with Lagrange function
L0 (qn,0, qn,1, · · · , qn,mn−1, q̇n,mn−1) is assumed to be a regular system, namely
not leading to any constraints for the conjugate momenta pn,mn−1. Conse-
quently, the constraints in (25) determine the full set of primary contraints in

the extended formalism of the higher order Lagrangian L0

(

xn, ẋn, · · · , x(mn)
n

)

.

The distinguished role of the conjugate variables (qn,mn−1, pn,mn−1) justi-
fies the definition of the restricted Legendre transform of L0 (qn,αn

, q̇n,mn−1),
leading to the restricted canonical Hamiltonian,

H0(qn,αn
, pn,mn−1) =

∑

n

q̇n,mn−1pn,mn−1 − L0 (qn,αn
, q̇n,mn−1) . (30)

In the same way as was established for the Hamiltonian H in (7), note that
the restricted Hamiltonian H0 is a function of the variables (qn,αn

, pn,mn−1)
only, irrespective of whether the relations (28) are invertible or not , namely
irrespective of whether L0 (qn,0, qn,1, · · · , qn,mn−1, q̇n,mn−1) defines a regular
system in the coordinates qn,mn−1 or not[3]. In the present discussion, the
assumption of regularity is necessary only in order that no further primary
constraints beyond those in (25) appear in the analysis.

In terms of the definitions and the primary constraints above, the cano-
nical Hamiltonian of the extended system,

H0 =
∑

n

mn−1
∑

αn

q̇n,αn
pn,αn

+
∑

n

mn−1
∑

in=1

µ̇n,inπn,in − L , (31)

is readily found to be given by

H0 (qn,αn
, pn,αn

; µn,in) = H0 (qn,αn
, pn,mn−1) −

∑

n

mn−1
∑

in=1

µn,inqn,in . (32)

However, as is well known[2], due to the presence of constraints, the Hamil-
tonian generating the genuine time evolution of the system under which the

10



constraints are preserved, is in general given by the canonical Hamiltonian
H0 and a linear combination of the constraints. Thus in the present case,
the would-be Hamiltonian is of the form,

H∗ = H0 +
∑

n

mn−1
∑

in=1

[

λ
(1)
n,in

Φn,in + λ
(2)
n,in

πn,in

]

, (33)

with λ
(1)
n,in

and λ
(2)
n,in

being Lagrange multipliers for the constraints. Consistent
time evolution of the primary constraints Φn,in and πn,in then imposes the
relations

λ
(1)
n,in

= qn,in , in = 1, 2, · · · , mn − 1 , (34)

as well as

λ
(2)
n,1 =

∂H0

∂qn,0
, λ

(2)
n,jn

=
∂H0

∂qn,jn−1
− µn,jn−1 , jn = 2, 3, · · · , mn − 1 . (35)

Consequently, the extended formulation of the system does not possess se-
condary constraints, while its extended Hamiltonian reduces to

H∗ = H0 +
∑

n

mn−1
∑

in=1

qn,inpn,in−1 +

+
∑

n

πn,1
∂H0

∂qn,0
+
∑

n

mn−1
∑

jn=2

πn,jn

[

∂H0

∂qn,jn−1
− µn,jn−1

]

. (36)

However, as already pointed out previously, all primary constraints Φn,in

and πn,in are second class, and may thus be solved for explicitly provided the
canonical Poisson brackets are traded for appropriate Dirac brackets[10, 2].
Choosing to solve the constraints in terms of

µn,in = −pn,in−1 , πn,in = 0 , in = 1, 2, · · · , mn − 1 , (37)

the reduced phase space degrees of freedom are then simply (qn,αn
, pn,αn

)
(αn = 0, 1, · · · , mn − 1). On the other hand, given the algebra (27) of con-
straints, the Dirac brackets of the reduced Hamiltonian description are easily
seen to remain canonical (αn = 0, 1, · · · , mn − 1; αm = 0, 1, · · · , mm − 1),

{qn,αn
, qm,αm

}
D

= 0 , {qn,αn
, pm,αm

}
D

= δnmδαnαm
, {pn,αn

, pm,αm
}

D
= 0 .

(38)
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The constrained description of higher order Lagrangian systems has thus
lead to the following Hamiltonian formulation. The local phase space coordi-
nates are the canonically conjugate pairs of degrees of freedom (qn,αn

, pn,αn
)

(αn = 0, 1, · · · , mn − 1), with the local symplectic structure determined by
the Dirac brackets in (38). Time evolution in phase space is specified through
these brackets by the extended Hamiltonian,

HE (qn,αn
, pn,αn

) = H0 (qn,αn
, pn,mn−1) +

∑

n

mn−1
∑

in=1

qn,inpn,in−1 . (39)

In particular, the fundamental equations of motion are (in = 1, 2, · · · , mn−1),

q̇n,in−1 = qn,in , q̇n,mn−1 =
∂H0

∂pn,mn−1
, (40)

as well as

ṗn,0 = −
∂H0

∂qn,0

, ṗn,in = −
∂H0

∂qn,in

− pn,in−1 . (41)

However, the restricted canonical Hamiltonian H0 is such that

∂H0

∂qn,αn

(qn,αn
, pn,mn−1) = −

∂L0

∂qn,αn

(qn,αn
, q̇n,mn−1(qn,αn

, pn,mn−1)) , (42)

so that the equations (41) for pn,αn
are equivalent to

∂L0

∂qn,0
−

d

dt
pn,0 = 0 , (43)

with

pn,in−1 =
∂L0

∂qn,in

−
d

dt
pn,in , in = 1, 2, · · · , mn − 1 . (44)

Expressed in this manner, it is clear how these Hamiltonian equations
of motion are indeed equivalent to the Euler-Lagrange equations (19) to
(22) of Sect.3, when the constraints (µn,in = −pn,in−1) are accounted for.
Indeed, (43) determine the actual equations of motion of the system and
are equivalent to (22). The conjugate momenta pn,0 are defined recursively
through the equations (44), which are equivalent to (20) and (21), given the
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momenta pn,mn−1. Finally, the latter quantities, which are absent of course
in the Lagrangian equations of motion except through their definition as

pn,mn−1 =
∂L0

∂q̇n,mn−1

(qn,αn
, q̇n,mn−1) , (45)

are determined implicitly by the Hamiltonian equations of motion,

q̇n,mn−1 =
∂H0

∂pn,mn−1
(qn,αn

, pn,mn−1) . (46)

Since the Lagrangian L0 (qn,αn
, q̇n,mn−1) is assumed to be regular in the co-

ordinates qn,mn−1, this latter relation is indeed invertible, leading back to
the relation (45). It is in this way that the present Hamiltonian equations of
motion are equivalent to the Euler-Lagrange equations under the Lagrangian
reduction, namely the reduction of conjugate momenta pn,αn

in terms of the
coordinates qn,αn

and their velocities q̇n,αn
. Therefore, since the auxiliary

Lagrangian formulation was shown to reproduce the Euler-Lagrange equa-
tions of the higher order Lagrangian, the present Hamiltonian construction
is established to be equivalent to the original description of the system as
well.

5 Ostrogradsky’s Approach Revisited

The equivalence of the results obtained through the analysis of constraints
applied to the auxiliary formulation of regular higher order Lagrangian sys-
tems with Ostrogradsky’s construction is now obvious.

In the latter approach at the Hamiltonian level, the successive time deriva-
tives x(αn)

n (αn = 0, 1, · · · , mn−1) of the degrees of freedom xn have to be con-
sidered as being independent . In the constrained formulation, these variables
correspond to the independent auxiliary coordinates qn,αn

, with in particular
(qn,0 = xn). In addition, the fundamental brackets (13) in Ostrogradsky’s
formulation are identical to the canonical Dirac brackets(38) of the reduced
phase space degrees of freedom (qn,αn

, pn,αn
).

Finally, it is clear that the extended Hamiltonian HE in (39) is identical
to Ostrogradsky’s canonical Hamiltonian H in (12). In particular, note how
in the definition of the latter quantity, the restricted canonical Hamiltonian
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H0 defined in (30) appears naturally, indeed emphasizing once again the
distinguished role played by the time derivatives x(mn)

n of maximal order of
the degrees of freedom xn(t).

Therefore, the analysis of the previous section, based on the auxiliary for-
mulation of regular higher order Lagrangian systems and Dirac’s analysis of
constraints, has recovered precisely Ostrogradsky’s Hamiltonian description
of such systems.

6 Conclusion

This note has established the equivalence of the Hamiltonian formulation of
regular higher order Lagrangian systems due to Ostrogradsky[7], with a con-
strained auxiliary description[8, 9] of such systems in which time derivatives
of degrees of freedom of at most first order only are involved. The latter
approach offers the following advantages, however.

In Ostrogradsky’s construction, time derivatives of the coordinates of dif-
ferent order have to be considered as being independent . Such a situation is
a possible source of confusion, especially at the quantum level when translat-
ing Poisson brackets into (anti)commutation relations for the fundamental
quantum operators. Indeed, it is not always clear when to consider a time
derivative of given order as an independent variable or as the first order time
derivative of some other variable in Ostrogradsky’s phase space. In the aux-
iliary approach, this issue is avoided altogether ab initio, since independent
auxiliary degrees of freedom are introduced explicitly, each being associated
with a time derivative of given order of each of the original degrees of freedom.
In this manner, the local structure of phase space and its local symplectic
geometry, is made perhaps much more transparent than in Ostrogradsky’s
approach.

More importantly however, the auxiliary formulation presents the addi-
tional advantage that the auxiliary Lagrangian depends on time derivatives
of first order only. Therefore, any higher order Lagrangian system—be it
regular or not—can always be brought into the realm of those Lagrangian
systems for which a wealth of methods—classical and quantum—have been
developed over the years. Due to the presence of auxiliary degrees of free-
dom, the auxiliary formulation always leads to constraints, requiring the
techniques of constrained dynamics[2].
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Finally, in contradistinction to Ostrogradsky’s construction which ap-
plies to regular higher order systems only , the auxiliary formulation, being
already a constrained one, does not require to distinguish between regular
and singular higher order Lagrangian systems. Hence, the quantisation of
such systems, including the BRST quantisation of singular ones, does not
necessitate a separate and generalised formalism not yet developed . All the
readily available methods of ordinary constrained quantisation—and nothing
more—suffice for the Hamiltonian formulation and the quantisation of any
higher order Lagrangian system. As this note has established, Ostrogradsky’s
construction is thereby recovered exactly in the case of regular systems. The
case of singular systems however, is beyond the scope of the latter approach,
and the auxiliary formulation then becomes unavoidable. In effect, precisely
this method has been applied already to rigid particles for example, with
important conclusions as to their quantum consistency[6].
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