69 research outputs found

    Synchronous MDADT-Based Fuzzy Adaptive Tracking Control for Switched Multiagent Systems via Modified Self-Triggered Mechanism

    Get PDF
    In this paper, a self-triggered fuzzy adaptive switched control strategy is proposed to address the synchronous tracking issue in switched stochastic multiagent systems (MASs) based on mode-dependent average dwell-time (MDADT) method. Firstly, a synchronous slow switching mechanism is considered in switched stochastic MASs and realized through a class of designed switching signals under MDADT property. By utilizing the information of both specific agents under switching dynamics and observers with switching features, the synchronous switching signals are designed, which reduces the design complexity. Then, a switched state observer via a switching-related output mask is proposed. The information of agents and their preserved neighbors is utilized to construct the observer and the observation performance of states is improved. Moreover, a modified self- triggered mechanism is designed to improve control performance via proposing auxiliary function. Finally, by analysing the re- lationship between the synchronous switching problem and the different switching features of the followers, the synchronous slow switching mechanism based on MDADT is obtained. Meanwhile, the designed self-triggered controller can guarantee that all signals of the closed-loop system are ultimately bounded under the switching signals. The effectiveness of the designed control method can be verified by some simulation results

    Trust-based fault detection and robust fault-tolerant control of uncertain cyber-physical systems against time-delay injection attacks

    Get PDF
    Control systems need to be able to operate under uncertainty and especially under attacks. To address such challenges, this paper formulates the solution of robust control for uncertain systems under time-varying and unknown time-delay attacks in cyber-physical systems (CPSs). A novel control method able to deal with thwart time-delay attacks on closed-loop control systems is proposed. Using a descriptor model and an appropriate Lyapunov functional, sufficient conditions for closed-loop stability are derived based on linear matrix inequalities (LMIs). A design procedure is proposed to obtain an optimal state feedback control gain such that the uncertain system can be resistant under an injection time-delay attack with variable delay. Furthermore, various fault detection frameworks are proposed by following the dynamics of the measured data at the system's input and output using statistical analysis such as correlation analysis and K-L (Kullback-Leibler) divergence criteria to detect attack's existence and to prevent possible instability. Finally, an example is provided to evaluate the proposed design method's effectiveness

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Event-triggered Consensus Frameworks for Multi-agent Systems

    Get PDF
    Recently, distributed multi-agent systems (MAS) have been widely studied for a variety of engineering applications, including cooperative vehicular systems, sensor networks, and electrical power grids. To solve the allocated tasks in MASs, each agent autonomously determines the appropriate actions using information available locally and received from its neighbours. Many cooperative behaviours in MAS are based on a consensus algorithm. Consensus, by definition, is to distributively agree on a parameter of interest between the agents. Depending on the application, consensus has different configurations such as leader-following, formation, synchronization in robotic arms, and state estimation in sensor networks. Consensus in MASs requires local measurements and information exchanges between the neighbouring agents. Due to the energy restriction, hardware limitation, and bandwidth constraint, strategies that reduce the amount of measurements and information exchanges between the agents are of paramount interest. Event-triggering transmission schemes are among the most recent strategies that efficiently reduce the number of transmissions. This dissertation proposes a number of event-triggered consensus (ETC) implementations which are applicable to MASs. Different performance objectives and physical constraints, such as a desired convergence rate, robustness to uncertainty in control realization, information quantization, sampled-data processing, and resilience to denial of service (DoS) attacks are included in realization of the proposed algorithms. A novel convex optimization is proposed which simultaneously designs the control and event-triggering parameters in a unified framework. The optimization governs the trade-off between the consensus convergence rate and intensity of transmissions. This co-design optimization is extended to an advanced class of event-triggered schemes, known as the dynamic event-triggering (DET), which is able to substantially reduce the amount of transmissions. In the presence of DoS attacks, the co-design optimization simultaneously computes the control and DET parameters so that the number of transmissions is reduced and a desired level of resilience to DoS is guaranteed. In addition to consensus, a formation-containment implementation is proposed, where the amount of transmissions are reduced using the DET schemes. The performance of the proposed implementations are evaluated through simulation over several MASs. The experimental results demonstrate the effectiveness of the proposed implementations and verify their design flexibility
    corecore