880 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Cross-Layer Design of Highly Scalable and Energy-Efficient AI Accelerator Systems Using Photonic Integrated Circuits

    Get PDF
    Artificial Intelligence (AI) has experienced remarkable success in recent years, solving complex computational problems across various domains, including computer vision, natural language processing, and pattern recognition. Much of this success can be attributed to the advancements in deep learning algorithms and models, particularly Artificial Neural Networks (ANNs). In recent times, deep ANNs have achieved unprecedented levels of accuracy, surpassing human capabilities in some cases. However, these deep ANN models come at a significant computational cost, with billions to trillions of parameters. Recent trends indicate that the number of parameters per ANN model will continue to grow exponentially in the foreseeable future. To meet the escalating computational demands of ANN models, the hardware accelerators used for processing ANNs must offer lower latency and higher energy efficiency. Unfortunately, traditional electronic implementations of ANN hardware accelerators, including CPUs, Graphics Processing Units (GPUs), Application-Specific Integrated Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs), have fallen short of meeting the latency and energy efficiency requirements for processing deep ANN models. Furthermore, the interconnection network subsystems in these electronic accelerator systems, designed to facilitate large-scale data transfers between processing cores and memory/control units within the accelerator systems, have become bottlenecks that hinder the throughput, latency, and energy efficiency of deep ANN model processing. Fortunately, Photonic Integrated Circuits (PICs)-based accelerator systems, featuring photonic network subsystems are promising alternatives to conventional electronic accelerators. PIC-based accelerator systems operate in the optical domain, delivering processing at the speed of light with ultra-low latency, minimal dynamic energy consumption, and high throughput. These advantages stem from the wavelength division multiplexing capabilities and the absence of distance-dependent impedance in PICs. Furthermore, these characteristics enable the implementation of high-performance photonic network subsystems within PIC-based accelerator systems. Additionally, PIC-based accelerator systems offer inherent optical nonlinearities. Despite these numerous advantages over electronic accelerators, PIC-based systems still encounter several challenges due to limited optical power budget, susceptibility to crosstalk and other sources of noise caused by the analog operation, high area consumption, and restricted functional flexibility of PICs. These challenges manifest in various ways. (i) The existence of a significant trade-off between the achievable processing core size and the supported bit precision that impedes the scalability of processing cores. (ii) The limited reconfigurability, in terms of supported computing size and precision, makes them less adaptable to modern ANN models with diverse computational and precision demands. (iii) The reliance on electronic adder networks for accumulation diminishes the latency and energy consumption benefits of PIC-based accelerator systems due to frequent analog-to-digital conversions and memory accesses involved in accumulations. My research has contributed several solutions that overcome a multitude of these challenges and improve the throughput, energy efficiency, and flexibility of PIC-based AI accelerator systems. I identified and analyzed factors that affect the scalability and reconfigurability of PIC-based AI accelerator systems. I proposed several novel PIC-based accelerator architectures with enhancements at the circuit level, architecture level, and system level to improve scalability, reconfigurability, and functional flexibility. At the circuit level, these enhancements serve to decrease optical signal losses, reduce control complexity, enable adaptability for various ANN processing tasks, and lower power and area consumption. The architecture-level improvements mitigate crosstalk noise, facilitate functional reconfigurability, enable in-situ and flexible spatio-temporal accumulation, and provide flexible support for different dataflows. The system-level enhancements involve the integration of stochastic computing with PIC-based accelerators to break the inherent trade-off between scalability and supported bit precision. Additionally, applying stochastic computing enhances the flexibility of PIC-based accelerators, allowing them to support mixed-precision ANN models. These cross-layer enhancements collectively contribute to the design of PIC-based AI accelerator systems, resulting in improved throughput, energy efficiency, scalability, and reconfigurability

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    INTEGRATED SINGLE-PHOTON SENSING AND PROCESSING PLATFORM IN STANDARD CMOS

    Get PDF
    Practical implementation of large SPAD-based sensor arrays in the standard CMOS process has been fraught with challenges due to the many performance trade-offs existing at both the device and the system level [1]. At the device level the performance challenge stems from the suboptimal optical characteristics associated with the standard CMOS fabrication process. The challenge at the system level is the development of monolithic readout architecture capable of supporting the large volume of dynamic traffic, associated with multiple single-photon pixels, without limiting the dynamic range and throughput of the sensor. Due to trade-offs in both functionality and performance, no general solution currently exists for an integrated single-photon sensor in standard CMOS single photon sensing and multi-photon resolution. The research described herein is directed towards the development of a versatile high performance integrated SPAD sensor in the standard CMOS process. Towards this purpose a SPAD device with elongated junction geometry and a perimeter field gate that features a large detection area and a highly reduced dark noise has been presented and characterized. Additionally, a novel front-end system for optimizing the dynamic range and after-pulsing noise of the pixel has been developed. The pixel is also equipped with an output interface with an adjustable pulse width response. In order to further enhance the effective dynamic range of the pixel a theoretical model for accurate dead time related loss compensation has been developed and verified. This thesis also introduces a new paradigm for electrical generation and encoding of the SPAD array response that supports fully digital operation at the pixel level while enabling dynamic discrete time amplitude encoding of the array response. Thus offering a first ever system solution to simultaneously exploit both the dynamic nature and the digital profile of the SPAD response. The array interface, comprising of multiple digital inputs capacitively coupled onto a shared quasi-floating sense node, in conjunction with the integrated digital decoding and readout electronics represents the first ever solid state single-photon sensor capable of both photon counting and photon number resolution. The viability of the readout architecture is demonstrated through simulations and preliminary proof of concept measurements

    Low-Complexity Time Synchronization Algorithm for Optical OFDM PON System Using a Directly Modulated DFB Laser

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper a low-complexity time synchronization algorithm for optical orthogonal frequency division multiplexing (OFDM) is proposed. The algorithm is based on a repetitive preamble that allows the use of a short cross correlator with an exponential average filter for postprocessing before a threshold detection. The signals in the correlation have been quantized with 1 bit, and the correlations have been implemented as a hard-wired tree adder to reduce the hardware cost. This solution has been verified in a passive optical network (PON) system using a directly modulated distributed feedback (DFB) laser achieving excellent performance with low computing processing complexity even in low signal-to-noise ratio scenarios. Finally, a parallel hardware architecture has been proposed for this time synchronization algorithm, and it has been implemented in a field programmable gate array device reaching a sample rate throughput up to 7.4 Gs/s.This work was supported by the Spanish Ministerio de Economia y Competitividad under projects TEC2012-38558-C02-02 and TEC2012-38558-C02-01 and with FEDER funds.Bruno, JS.; Almenar Terre, V.; Valls Coquillat, J.; Corral, JL. (2015). Low-Complexity Time Synchronization Algorithm for Optical OFDM PON System Using a Directly Modulated DFB Laser. IEEE/OSA Journal of Optical Communications and Networking. 7(11):1025-1033. doi:10.1364/JOCN.7.001025S1025103371

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Models of wave-function collapse, underlying theories, and experimental tests

    No full text
    We describe the state of the art in preparing, manipulating and detecting coherent molecular matter. We focus on experimental methods for handling the quantum motion of compound systems from diatomic molecules to clusters or biomolecules.Molecular quantum optics offers many challenges and innovative prospects: already the combination of two atoms into one molecule takes several well-established methods from atomic physics, such as for instance laser cooling, to their limits. The enormous internal complexity that arises when hundreds or thousands of atoms are bound in a single organic molecule, cluster or nanocrystal provides a richness that can only be tackled by combining methods from atomic physics, chemistry, cluster physics, nanotechnology and the life sciences.We review various molecular beam sources and their suitability for matter-wave experiments. We discuss numerous molecular detection schemes and give an overview over diffraction and interference experiments that have already been performed with molecules or clusters.Applications of de Broglie studies with composite systems range from fundamental tests of physics up to quantum-enhanced metrology in physical chemistry, biophysics and the surface sciences.Nanoparticle quantum optics is a growing field, which will intrigue researchers still for many years to come. This review can, therefore, only be a snapshot of a very dynamical process
    corecore