204 research outputs found

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    A Hybrid Combination Scheme for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    We propose a novel hybrid combination scheme in cooperative spectrum sensing (CSS), which utilizes the diversity of reporting channels to achieve better throughput performance. Secondary users (SUs) with good reporting channel quality transmit quantized local observation statistics to fusion center (FC), while others report their local decisions. FC makes the final decision by carrying out hybrid combination. We derive the closed-form expressions of throughput and detection performance as a function of the number of SUs which report local observation statistics. The simulation and numerical results show that the hybrid combination scheme can achieve better throughput performance than hard combination scheme and soft combination scheme

    Combined Soft Hard Cooperative Spectrum Sensing in Cognitive Radio Networks

    Get PDF
    Providing some techniques to enhance the performance of spectrum sensing in cognitive radio systems while accounting for the cost and bandwidth limitations in practical scenarios is the main objective of this thesis. We focus on an essential element of cooperative spectrum sensing (CSS) which is the data fusion that combines the sensing results to make the final decision. Exploiting the advantage of the superior performance of the soft schemes and the low bandwidth of the hard schemes by incorporating them in cluster based CSS networks is achieved in two different ways. First, a soft-hard combination is employed to propose a hierarchical cluster based spectrum sensing algorithm. The proposed algorithm maximizes the detection performances while satisfying the probability of false alarm constraint. Simulation results of the proposed algorithm are presented and compared with existing algorithms over the Nakagami fading channel. Moreover, the results show that the proposed algorithm outperforms the existing algorithms. In the second part, a low complexity soft-hard combination scheme is suggested by utilizing both one-bit and two-bit schemes to balance between the required bandwidth and the detection performance by taking into account that different clusters undergo different conditions. The scheme allocates a reliability factor proportional to the detection rate to each cluster to combine the results at the Fusion center (FC) by extracting the results of the reliable clusters. Numerical results obtained have shown that a superior detection performance and a minimum overhead can be achieved simultaneously by combining one bit and two schemes at the intra-cluster level while assigning a reliability factor at the inter-cluster level

    Cooperative spectrum sensing using adaptive quantization mapping for mobile cognitive radio networks

    Get PDF
    Sparsity in spectrum is the result of spectrum underutilization. Cognitive radio (CR) technology has been proposed to address inefficiency of spectrum utilisation through dynamic spectrum access technique. CR in general allows secondary node (SN) users to access the licensed or primary users’ (PU) band without disrupting their activities. In CR cooperative spectrum sensing (CSS), a group of SNs share their spectrum sensing information to provide a better picture of the spectrum usage over the area where the SNs are located. In centralised CCS approach, all the SNs report their sensing information to a master node (MN) through a control reporting channel before the MN decides the spectrum bands that can be used by the SNs. To reduce unnecessary reporting information by the cooperating nodes, orthogonal frequency division multiplexing (OFDM) Subcarrier Mapping (SCM) spectrum exchange information was proposed. In this technique, the detection power level from each secondary SN user is quantized and mapped into a single OFDM subcarrier number before delivering it to the MN. Most researches in cooperative spectrum sensing often stated that the SNs are absolutely in stationary condition. So far, the mobility effect on OFDM based SCM spectrum exchange information has not been addressed before. In this thesis, the benchmarking of SCM in mobility environment is carried out. The results showed that during mobility, the performance of OFDM-based SCM spectrum exchange information degraded significantly. To alleviate the degradation, OFDM-based spectrum exchange information using adaptive quantization is proposed, which is known as Dynamic Subcarrier Mapping (DSM). The method is proposed to adapt to changes in detected power level during mobility. This new nonuniform subcarrier mapping considers the range of received power, threshold level and dynamic subcarrier width. The range of received power is first compressed or expanded depending on the intensity of the received power against a pre-determined threshold level before the OFDM subcarrier number is computed. The results showed that OFDM-based DSM spectrum exchange information is able to enhance the probability of detection for cooperative sensing by up to 43% and reduce false alarm by up to 28%. The DSM spectrum exchange information method has the potential to improve cooperative spectrum sensing for future CR mobile wireless networks

    Censor-based cooperative Multi-Antenna Spectrum Sensing with Imperfect Reporting Channels

    Get PDF
    The present contribution proposes a spectrally efficient censor-based cooperative spectrum sensing (C-CSS) approach in a sustainable cognitive radio network that consists of multiple antenna nodes and experiences imperfect sensing and reporting channels. In this context, exact analytic expressions are first derived for the corre- sponding probability of detection, probability of false alarm and sec- ondary throughput, assuming that each secondary user (SU) sends its detection outcome to a fusion center only when it has detected a primary signal. Capitalizing on the findings of the analysis, the effects of critical measures, such as the detection threshold, the number of SUs and the number of employed antennas, on the overall system performance are also quantified. In addition, the optimal detection threshold for each antenna based on the Neyman-Pearson criterion is derived and useful insights are developed on how to maximize the system throughput with a reduced number of SUs. It is shown that the C-CSS approach provides two distinct benefits compared with the conventional sensing approach, i.e., without censoring: i) the sensing tail problem, which exists in imperfect sensing environments, can be mitigated; ii) less SUs are ultimately required to obtain higher secondary throughput, rendering the system more sustainable

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Optimal Cooperative Spectrum Sensing for Cognitive Radio

    Get PDF
    The rapid increasing interest in wireless communication has led to the continuous development of wireless devices and technologies. The modern convergence and interoperability of wireless technologies has further increased the amount of services that can be provided, leading to the substantial demand for access to the radio frequency spectrum in an efficient manner. Cognitive radio (CR) an innovative concept of reusing licensed spectrum in an opportunistic manner promises to overcome the evident spectrum underutilization caused by the inflexible spectrum allocation. Spectrum sensing in an unswerving and proficient manner is essential to CR. Cooperation amongst spectrum sensing devices are vital when CR systems are experiencing deep shadowing and in a fading environment. In this thesis, cooperative spectrum sensing (CSS) schemes have been designed to optimize detection performance in an efficient and implementable manner taking into consideration: diversity performance, detection accuracy, low complexity, and reporting channel bandwidth reduction. The thesis first investigates state of the art spectrums sensing algorithms in CR. Comparative analysis and simulation results highlights the different pros, cons and performance criteria of a practical CSS scheme leading to the problem formulation of the thesis. Motivated by the problem of diversity performance in a CR network, the thesis then focuses on designing a novel relay based CSS architecture for CR. A major cooperative transmission protocol with low complexity and overhead - Amplify and Forward (AF) cooperative protocol and an improved double energy detection scheme in a single relay and multiple cognitive relay networks are designed. Simulation results demonstrated that the developed algorithm is capable of reducing the error of missed detection and improving detection probability of a primary user (PU). To improve spectrum sensing reliability while increasing agility, a CSS scheme based on evidence theory is next considered in this thesis. This focuses on a data fusion combination rule. The combination of conflicting evidences from secondary users (SUs) with the classical Dempster Shafter (DS) theory rule may produce counter-intuitive results when combining SUs sensing data leading to poor CSS performance. In order to overcome and minimise the effect of the counter-intuitive results, and to enhance performance of the CSS system, a novel state of the art evidence based decision fusion scheme is developed. The proposed approach is based on the credibility of evidence and a dissociability degree measure of the SUs sensing data evidence. Simulation results illustrate the proposed scheme improves detection performance and reduces error probability when compared to other related evidence based schemes under robust practcial scenarios. Finally, motivated by the need for a low complexity and minmum bandwidth reporting channels which can be significant in high data rate applications, novel CSS quantization schemes are proposed. Quantization methods are considered for a maximum likelihood estimation (MLE) and an evidence based CSS scheme. For the MLE based CSS, a novel uniform and optimal output entropy quantization scheme is proposed to provide fewer overhead complexities and improved throughput. While for the Evidence based CSS scheme, a scheme that quantizes the basic probability Assignment (BPA) data at each SU before being sent to the FC is designed. The proposed scheme takes into consideration the characteristics of the hypothesis distribution under diverse signal-to-noise ratio (SNR) of the PU signal based on the optimal output entropy. Simulation results demonstrate that the proposed quantization CSS scheme improves sensing performance with minimum number of quantized bits when compared to other related approaches

    On the Average Rate of HARQ-Based Quasi-Static Spectrum Sharing Networks

    Get PDF
    Spectrum sharing networks are communication setups in which unlicensed secondary users are permitted to work within the spectrum resources of primary licensees. Considering quasi-static fading environments, this paper studies the effect of hybrid automatic repeat request (HARQ) feedback on the average rate of unlicensed spectrum sharing channels. The results are obtained for different scenarios; Under both peak and average secondary user transmission power constraints, the channel average rate is determined under primary user limited received interference power conditions when there is perfect information about the interference available at the secondary user transmitter. An approximate solution for power allocation between incremental redundancy (INR) HARQ-based data retransmissions is proposed which can be applied in single-user networks as well. Then, we investigate the effect of imperfect secondary-primary channel state information on the interference-limited average rate of the secondary channel. Finally, we restudy all mentioned scenarios in the case where the data transmission is constrained to have limited outage probability. Substantial performance improvement is observed with even a single HARQ-based retransmission in all simulations

    Optimizing resource allocation in eh-enabled internet of things

    Get PDF
    Internet of Things (IoT) aims to bridge everyday physical objects via the Internet. Traditional energy-constrained wireless devices are powered by fixed energy sources like batteries, but they may require frequent battery replacements or recharging. Wireless Energy Harvesting (EH), as a promising solution, can potentially eliminate the need of recharging or replacing the batteries. Unlike other types of green energy sources, wireless EH does not depend on nature and is thus a reliable source of energy for charging devices. Meanwhile, the rapid growth of IoT devices and wireless applications is likely to demand for more operating frequency bands. Although the frequency spectrum is currently scarce, owing to inefficient conventional regulatory policies, a considerable amount of the radio spectrum is greatly underutilized. Cognitive radio (CR) can be exploited to mitigate the spectrum scarcity problem of IoT applications by leveraging the spectrum holes. Therefore, transforming the IoT network into a cognitive based IoT network is essential to utilizing the available spectrum opportunistically. To address the two aforementioned issues, a novel model is proposed to leverage wireless EH and CR for IoT. In particular, the sum rate of users is maximized for a CR-based IoT network enabled with wireless EH. Users operate in a time switching fashion, and each time slot is partitioned into three non-overlapping parts devoted for EH, spectrum sensing and data transmission. There is a trade-off among the lengths of these three operations and thus the time slot structure is to be optimized. The general problem of joint resource allocation and EH optimization is formulated as a mixed integer nonlinear programming task which is NP-hard and intractable. Therefore, a sub-channel allocation scheme is first proposed to approximately satisfy users rate requirements and remove the integer constraints. In the second step, the general optimization problem is reduced to a convex optimization task. Another optimization framework is also designed to capture a fundamental tradeoff between energy efficiency (EE) and spectral efficiency for an EH-enabled IoT network. In particular, an EE maximization problem is formulated by taking into consideration of user buffer occupancy, data rate fairness, energy causality constraints and interference constraints. Then, a low complexity heuristic algorithm is proposed to solve the resource allocation and EE optimization problem. The proposed algorithm is shown to be capable of achieving a near optimal solution with polynomial complexity. To support Machine Type Communications (MTC) in next generation mobile networks, NarrowBand-IoT (NB-IoT) has emerged as a promising solution to provide extended coverage and low energy consumption for low cost MTC devices. However, the existing orthogonal multiple access scheme in NB-IoT cannot provide connectivity for a massive number of MTC devices. In parallel with the development of NB-IoT, Non-Orthogonal Multiple Access (NOMA), introduced for the fifth generation wireless networks, is deemed to significantly improve the network capacity by providing massive connectivity through sharing the same spectral resources. To leverage NOMA in the context of NB-IoT, a power domain NOMA scheme is proposed with user clustering for an NB-IoT system. In particular, the MTC devices are assigned to different ranks within the NOMA clusters where they transmit over the same frequency resources. Then, an optimization problem is formulated to maximize the total throughput of the network by optimizing the resource allocation of MTC devices and NOMA clustering while satisfying the transmission power and quality of service requirements. Furthermore, an efficient heuristic algorithm is designed to solve the proposed optimization problem by jointly optimizing NOMA clustering and resource allocation of MTC devices
    • …
    corecore