2 research outputs found

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Physical-layer Network Coding for Cooperative Wireless Networks

    Get PDF
    As a newly-emerged paradigm in the networking techniques, physical-layer network coding (PNC) [1, 5] takes advantage of the superimposition of the electromagnetic waves, and embraces the interference which was typically deemed as harmful, by performing exclusive-or mapping. Therefore, the spectral efficiency is utilized, which in turn boosts the network throughput. In the classical 2-way relay channel (2-WRC), PNC only spends two channel uses for the bi-directional data exchange. However, one challenge for such a paradigm is that the singular fading states in the uplink of 2-WRC, might result in ambiguity for decoding the network coded symbol. One major focus of this thesis is to address the fading issue for PNC in the 2-WRC. Another fundamental challenge for PNC is to extend the PNC from the 2-WRC to a multi-user network such as the multi-way relay channel (M-WRC) or the hierarchical wireless network (HWN). To tackle these two fundamental challenges of PNC, several solutions are proposed in this thesis, which are summarized as follows: First, we introduce two efficient fading correction strategies, i.e., the rotationally-invariant coded modulation and the soft-bit correction. Second, a novel multilevel coded linear PNC scheme with extended mapping for the Rayleigh fading 2-WRC is proposed. Third, we design a new type of linear PNC for the Rayleigh fading 2-WRC, based on rings. We refer to such design as linear PNC over the hybrid finite ring. Fourth, we redesign PNC for the HWN, which facilitates the multi-user data exchange. To combat the co-channel interference introduced by multi-user data exchange, two efficient interference exploitation strategies based on network coding are proposed: 1) PNC with joint decoding; and 2) analogue network coding with interference-aware maximum likelihood detection. Finally, we propose a multilevel coded LPNC for the data exchange in the M-WRC
    corecore