5,621 research outputs found

    Quantitative analysis of breast cancer diagnosis using a probabilistic modelling approach

    Get PDF
    Background:Breast cancer is the most prevalent cancer in women in most countries of the world. Many computer aided diagnostic methods have been proposed, but there are few studies on quantitative discovery of probabilistic dependencies among breast cancer data features and identification of the contribution of each feature to breast cancer diagnosis. Methods:This study aims to fill this void by utilizing a Bayesian network (BN) modelling approach. A K2 learning algorithm and statistical computation methods are used to construct BN structure and assess the obtained BN model. The data used in this study were collected from a clinical ultrasound dataset derived from a Chinese local hospital and a fine-needle aspiration cytology (FNAC) dataset from UCI machine learning repository. Results: Our study suggested that, in terms of ultrasound data, cell shape is the most significant feature for breast cancer diagnosis, and the resistance index presents a strong probabilistic dependency on blood signals. With respect to FNAC data, bare nuclei are the most important discriminating feature of malignant and benign breast tumours, and uniformity of both cell size and cell shape are tightly interdependent. Contributions: The BN modelling approach can support clinicians in making diagnostic decisions based on the significant features identified by the model, especially when some other features are missing for specific patients. The approach is also applicable to other healthcare data analytics and data modelling for disease diagnosis

    Specifying Exposure Classification Parameters for Sensitivity Analysis: Family Breast Cancer History

    Get PDF
    One of the challenges to implementing sensitivity analysis for exposure misclassification is the process of specifying the classification proportions (eg, sensitivity and specificity). The specification of these assignments is guided by three sources of information: estimates from validation studies, expert judgment, and numerical constraints given the data. The purpose of this teaching paper is to describe the process of using validation data and expert judgment to adjust a breast cancer odds ratio for misclassification of family breast cancer history. The parameterization of various point estimates and prior distributions for sensitivity and specificity were guided by external validation data and expert judgment. We used both nonprobabilistic and probabilistic sensitivity analyses to investigate the dependence of the odds ratio estimate on the classification error. With our assumptions, a wider range of odds ratios adjusted for family breast cancer history misclassification resulted than portrayed in the conventional frequentist confidence interval.Children's Cancer Research Fund, Minneapolis, MN, US

    Breast Cancer: Modelling and Detection

    Get PDF
    This paper reviews a number of the mathematical models used in cancer modelling and then chooses a specific cancer, breast carcinoma, to illustrate how the modelling can be used in aiding detection. We then discuss mathematical models that underpin mammographic image analysis, which complements models of tumour growth and facilitates diagnosis and treatment of cancer. Mammographic images are notoriously difficult to interpret, and we give an overview of the primary image enhancement technologies that have been introduced, before focusing on a more detailed description of some of our own recent work on the use of physics-based modelling in mammography. This theoretical approach to image analysis yields a wealth of information that could be incorporated into the mathematical models, and we conclude by describing how current mathematical models might be enhanced by use of this information, and how these models in turn will help to meet some of the major challenges in cancer detection

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    The health-related social costs of alcohol in Belgium

    Get PDF
    Background: Alcohol is associated with adverse health effects causing a considerable economic impact to society. A reliable estimate of this economic impact for Belgium is lacking. This is the aim of the study. Methods: A prevalence-based approach estimating the direct, indirect and intangible costs for the year 2012 was used. Attributional fractions for a series of health effects were derived from literature. The human capital approach was used to estimate indirect costs, while the concept of disability-adjusted life years was used to estimate intangible costs. Sensitivity and scenario analyses were conducted to assess the uncertainty around cost estimates and to evaluate the impact of alternative modelling assumptions. Results: In 2012, total alcohol-attributable direct costs were estimated at is an element of 906.1 million, of which the majority were due to hospitalization (is an element of 743.7 million, 82%). The indirect costs amounted to is an element of 642.6 million, of which 62% was caused by premature mortality. Alcohol was responsible for 157,500 disability-adjusted life years representing is an element of 6.3 billion intangible costs. Conclusions: Despite a number of limitations intrinsic to this kind of research, the study can be considered as the most comprehensive analysis thus far of the health-related social costs of alcohol in Belgium
    • …
    corecore