5 research outputs found

    Design and Optimisation of the FlyFast Front-end for Attribute-based Coordination

    Get PDF
    Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design of such systems requires scalable analysis tools and methods, which have necessarily to rely on some form of approximation of the system's actual behaviour. Promising techniques are those based on mean-field approximation. The FlyFast model-checker uses an on-the-fly algorithm for bounded PCTL model-checking of selected individual(s) in the context of very large populations whose global behaviour is approximated using deterministic limit mean-field techniques. Recently, a front-end for FlyFast has been proposed which provides a modelling language, PiFF in the sequel, for the Predicate-based Interaction for FlyFast. In this paper we present details of PiFF design and an approach to state-space reduction based on probabilistic bisimulation for inhomogeneous DTMCs.Comment: In Proceedings QAPL 2017, arXiv:1707.0366

    Stochastic Process Algebras and their Markovian Semantics

    Get PDF

    Learning and Designing Stochastic Processes from Logical Constraints

    Get PDF
    Stochastic processes offer a flexible mathematical formalism to model and reason about systems. Most analysis tools, however, start from the premises that models are fully specified, so that any parameters controlling the system's dynamics must be known exactly. As this is seldom the case, many methods have been devised over the last decade to infer (learn) such parameters from observations of the state of the system. In this paper, we depart from this approach by assuming that our observations are {\it qualitative} properties encoded as satisfaction of linear temporal logic formulae, as opposed to quantitative observations of the state of the system. An important feature of this approach is that it unifies naturally the system identification and the system design problems, where the properties, instead of observations, represent requirements to be satisfied. We develop a principled statistical estimation procedure based on maximising the likelihood of the system's parameters, using recent ideas from statistical machine learning. We demonstrate the efficacy and broad applicability of our method on a range of simple but non-trivial examples, including rumour spreading in social networks and hybrid models of gene regulation

    Enhancing the VANET Network Layer

    Get PDF
    The aim of this thesis is to examine existing VANET network layer functionality and to propose enhancements to the VANET network layer to facilitate vehicular (V2X) communication. This thesis proposes three enhancements to the VANET network layer which address many of the issues with V2X communication, these enhancements are: a geographic overlay allowing vehicles to localize themselves; an IPv6 addressing strategy which embeds positional information within an IP address allowing for location based routing; and finally a novel position based routing protocol which has two primary advantages over existing protocols, firstly removing unnecessary overhead information and control communication, and secondly support for multiple types of V2X communication models. The simulation results show that the proposed enhancements are well suited in low and medium vehicular density environments. Based on the observed behaviors the author recommends further modification and study of position based routing protocols
    corecore