15,667 research outputs found

    Technical note: Bias and the quantification of stability

    Get PDF
    Research on bias in machine learning algorithms has generally been concerned with the impact of bias on predictive accuracy. We believe that there are other factors that should also play a role in the evaluation of bias. One such factor is the stability of the algorithm; in other words, the repeatability of the results. If we obtain two sets of data from the same phenomenon, with the same underlying probability distribution, then we would like our learning algorithm to induce approximately the same concepts from both sets of data. This paper introduces a method for quantifying stability, based on a measure of the agreement between concepts. We also discuss the relationships among stability, predictive accuracy, and bias

    Distribution-Based Categorization of Classifier Transfer Learning

    Get PDF
    Transfer Learning (TL) aims to transfer knowledge acquired in one problem, the source problem, onto another problem, the target problem, dispensing with the bottom-up construction of the target model. Due to its relevance, TL has gained significant interest in the Machine Learning community since it paves the way to devise intelligent learning models that can easily be tailored to many different applications. As it is natural in a fast evolving area, a wide variety of TL methods, settings and nomenclature have been proposed so far. However, a wide range of works have been reporting different names for the same concepts. This concept and terminology mixture contribute however to obscure the TL field, hindering its proper consideration. In this paper we present a review of the literature on the majority of classification TL methods, and also a distribution-based categorization of TL with a common nomenclature suitable to classification problems. Under this perspective three main TL categories are presented, discussed and illustrated with examples

    Are There Good Mistakes? A Theoretical Analysis of CEGIS

    Full text link
    Counterexample-guided inductive synthesis CEGIS is used to synthesize programs from a candidate space of programs. The technique is guaranteed to terminate and synthesize the correct program if the space of candidate programs is finite. But the technique may or may not terminate with the correct program if the candidate space of programs is infinite. In this paper, we perform a theoretical analysis of counterexample-guided inductive synthesis technique. We investigate whether the set of candidate spaces for which the correct program can be synthesized using CEGIS depends on the counterexamples used in inductive synthesis, that is, whether there are good mistakes which would increase the synthesis power. We investigate whether the use of minimal counterexamples instead of arbitrary counterexamples expands the set of candidate spaces of programs for which inductive synthesis can successfully synthesize a correct program. We consider two kinds of counterexamples: minimal counterexamples and history bounded counterexamples. The history bounded counterexample used in any iteration of CEGIS is bounded by the examples used in previous iterations of inductive synthesis. We examine the relative change in power of inductive synthesis in both cases. We show that the synthesis technique using minimal counterexamples MinCEGIS has the same synthesis power as CEGIS but the synthesis technique using history bounded counterexamples HCEGIS has different power than that of CEGIS, but none dominates the other.Comment: In Proceedings SYNT 2014, arXiv:1407.493

    Myths and Legends of the Baldwin Effect

    Get PDF
    This position paper argues that the Baldwin effect is widely misunderstood by the evolutionary computation community. The misunderstandings appear to fall into two general categories. Firstly, it is commonly believed that the Baldwin effect is concerned with the synergy that results when there is an evolving population of learning individuals. This is only half of the story. The full story is more complicated and more interesting. The Baldwin effect is concerned with the costs and benefits of lifetime learning by individuals in an evolving population. Several researchers have focussed exclusively on the benefits, but there is much to be gained from attention to the costs. This paper explains the two sides of the story and enumerates ten of the costs and benefits of lifetime learning by individuals in an evolving population. Secondly, there is a cluster of misunderstandings about the relationship between the Baldwin effect and Lamarckian inheritance of acquired characteristics. The Baldwin effect is not Lamarckian. A Lamarckian algorithm is not better for most evolutionary computing problems than a Baldwinian algorithm. Finally, Lamarckian inheritance is not a better model of memetic (cultural) evolution than the Baldwin effect

    Concept Learning By Example Decomposition

    Get PDF
    For efficient understanding and prediction in natural systems, even in artificially closed ones, we usually need to consider a number of factors that may combine in simple or complex ways. Additionally, many modern scientific disciplines face increasingly large datasets from which to extract knowledge (for example, genomics). Thus to learn all but the most trivial regularities in the natural world, we rely on different ways of simplifying the learning problem. One simplifying technique that is highly pervasive in nature is to break down a large learning problem into smaller ones; to learn the smaller, more manageable problems; and then to recombine them to obtain the larger picture. It is widely accepted in machine learning that it is easier to learn several smaller decomposed concepts than a single large one. Though many machine learning methods exploit it, the process of decomposition of a learning problem has not been studied adequately from a theoretical perspective. Typically such decomposition of concepts is achieved in highly constrained environments, or aided by human experts. In this work, we investigate concept learning by example decomposition in a general probably approximately correct (PAC) setting for Boolean learning. We develop sample complexity bounds for the different steps involved in the process. We formally show that if the cost of example partitioning is kept low then it is highly advantageous to learn by example decomposition. To demonstrate the efficacy of this framework, we interpret the theory in the context of feature extraction. We discover that many vague concepts in feature extraction, starting with what exactly a feature is, can be formalized unambiguously by this new theory of feature extraction. We analyze some existing feature learning algorithms in light of this theory, and finally demonstrate its constructive nature by generating a new learning algorithm from theoretical results
    • …
    corecore