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ABSTRACT 

For efficient understanding and prediction in natural systems, even in artificially closed 

ones, we usually need to consider a number of factors that may combine in simple or 

complex ways. Additionally, many modern scientific disciplines face increasingly large 

datasets from which to extract knowledge (for example, genomics). Thus to learn all but 

the most trivial regularities in the natural world, we rely on different ways of simplifying 

the learning problem.  

 

One simplifying technique that is highly pervasive in nature is to break down a large 

learning problem into smaller ones; to learn the smaller, more manageable problems; and 

then to recombine them to obtain the larger picture. It is widely accepted in machine 

learning that it is easier to learn several smaller decomposed concepts than a single large 

one. Though many machine learning methods exploit it, the process of decomposition of 

a learning problem has not been studied adequately from a theoretical perspective. 

Typically such decomposition of concepts is achieved in highly constrained 

environments, or aided by human experts.  

 

In this work, we investigate concept learning by example decomposition in a general 

probably approximately correct (PAC) setting for Boolean learning. We develop sample 

complexity bounds for the different steps involved in the process. We formally show that 

if the cost of example partitioning is kept low then it is highly advantageous to learn 

by example decomposition. To demonstrate the efficacy of this framework, we interpret 
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the theory in the context of feature extraction. We discover that many vague concepts in 

feature extraction, starting with what exactly a feature is, can be formalized 

unambiguously by this new theory of feature extraction. We analyze some existing 

feature learning algorithms in light of this theory, and finally demonstrate its constructive 

nature by generating a new learning algorithm from theoretical results.  
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CHAPTER 1: INTRODUCTION 

Learning is a central part of the cognitive process. We acquire all our knowledge from 

learning.  Since evolution is a learning algorithm, even instincts such as eating, or the 

fight or flight response, are learned and then imprinted onto our genetic code. It is no 

surprise then that the process of learning has occupied a central role in computer and 

cognitive science research. In recent years the study of learning has increasingly fallen 

under the rubric of computer science rather than mathematics or statistics alone. New 

research fields such as computational learning theory have expanded the paradigm from 

interpolation or induction by introducing novel complexity measures, new paradigms to 

look at learning, and tying abstract theory to concrete algorithms. This has facilitated a 

more applied approach.  

 

This chapter starts by considering what learning is, and how it has been considered in 

computer science. We look at some factors that make learning a hard problem in the 

natural world, and introduce our approach to its simplification. In this thesis we present a 

formal analysis of a major means of simplification of learning, the decomposition of the 

learning problem. 

What is Learning 

Learning involves acquiring knowledge from the external world through experience. 

Broadly speaking, learning may be defined as predicting future events based on past 

observations. The learner observes the external world until a pattern emerges; this pattern 

is then internalized in some form, like a rule, an equation, or a philosophy. Furthermore, 
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the learner may continue to refine the learned idea by continuing to observe. If possible, 

the learner may test the learned idea in the external world. Modifying the idea leads to 

modification of behavior, and this correspondence may be used to refine the idea. If we 

stratify this idea into temporal steps, we have 

1. Acquire experience 

2. Use this experience to form an idea 

3. Modify behavior based on this new knowledge, influencing future experience 

4. Repeat the steps 

This process may be formalized mathematically. The learner becomes an algorithm. The 

experience from the external world may be quantified as well. The idea to be learned 

becomes a hypothesis the learning algorithm postulates. The steps may be rewritten as 

1. Acquire samples from a dataset 

2. Induce hypothesis based on these samples 

3. Test hypothesis by predicting values of samples from dataset 

4. Continue until desired accuracy has been achieved. 

 

Of course, the learned hypothesis may not predict the values from the dataset perfectly. 

Even if the algorithm is working perfectly thus far, there is no guarantee that there would 

not arise a sample from the dataset that would throw the hypothesis off, necessitating its 

modification. Thus the algorithm learns only approximately. Also, there is no guarantee 

that the algorithm would ever learn the required hypothesis, though it is reasonable to 

think that an algorithm of sufficient power would learn eventually, given enough 

samples. These ideas are formalized in the probably approximately correct (PAC) 



 3

framework [Val84]. Other fields in computer science and statistics such as computational 

learning theory and statistical learning theory are closely related, and in many ways 

equivalent for the purposes of this thesis. In the next section, we discuss PAC learning in 

greater detail. 

The PAC Framework 

To address the questions posed in this thesis, we introduce a formal model for concept 

learning by example decomposition in this thesis. This model builds upon the PAC 

framework and its variants [Val84, Vap82, Hau92].  

 

Learning involves looking at some data and forming a general model, or hypothesis, for 

the purposes of classification or regression. The learning algorithm is provided with a 

data set, called training data, through which the algorithm forms a hypothesis. The 

hypothesis is used to predict or classify (and is hence tested by) another data set called 

testing data.  

 

Consider a set X called the instance space. X provides the input data for a learning 

algorithm. For example, X may be the set of all English words. A concept to be learned 

would be a subset of X that exemplifies some property. For example, the set of 

palindromes is a concept over the instance space of all English words. For learning, a 

sample of m examples is drawn from X×Y according to a probability distribution D, 

where Y = {0, 1}. A concept c is a function  

c: X → {0,1}. 
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A concept class C is a collection of concepts over X. A target concept ct  C correctly 

classifies all learning examples drawn from X×Y. The task of a learner L is to model the 

target concept as closely as possible [Ale99] by forming a hypothesis h  H, where H is 

the space of all possible hypotheses. The hypothesis space may be understood as all 

possible concepts that L may determine.  

 

In the PAC framework, the task of the learner is to find a good approximation for the 

target concept YXct :  drawn from the concept space C . Training data 

)},(),,(),,{(= 2211 mm yxyxyxz   consisting of examples for tc  are drawn from YX   

according to some probability distribution D  and presented to the learner. Based on this 

data, the learner picks a hypothesis YXh :  from the hypothesis space H  so as to 

minimize some measure of expected error with respect to D . 

 

All learning algorithms are blind except for a factor called bias, which is the set of all 

factors that collectively influence hypothesis selection [Utg86]. Inductive bias may be 

understood as assumptions about the target hypothesis that aid in its selection. An 

example is parsimony, where the smallest hypothesis among a selection is favored. 

 

We formally define learning in the PAC framework as introduced in [Hau90]. Let k  be 

the representation size of a sample. For each 1k  let kC  be a set of concepts over the 

instance space X . A concept class is 1}{:= k
kCC . Similarly kH  for 1k  is a set of 

hypotheses, and 1}{:= k
kHH  is the hypothesis space. 
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Definition 1 (PAC Learnable). Let C  and H  be defined over X . If concept class C  is 

PAC learnable within confidence parameter   and accuracy parameter   by hypothesis 

space H , then there exists an algorithm L  and a polynomial ),,( p  with the property 

that when L  is presented with a set M samples of any k
t Cc   picked using an arbitrary 

distribution D , L  returns a hypothesis kHML )(  and  

 ]1>}<))(({),
1

,
1

,("1["1,<<1,0<<0 


  MLerDkpmwheneverk D
m  

Where m = |M|, and ))(( MLerD is the error of machine L on M. 

 

PAC learnability measures a property of the problem being learned, in this case the 

concept class C. It simply means that if m is large enough, then there would exist an 

algorithm which would be able to learn C within some parameters. Here, L is a learning 

algorithm that is presented a sample set M of size m picked from the concept space C. 

Upon processing this sample set, L returns a hypothesis L(M) explaining it. Thus L has 

‘learned’ something about the concept which was sampled, and represented this 

knowledge in L(M). This hypothesis may not have perfectly learned the concept under 

question, and there is a chance that L may not have learned anything at all. These factors 

are represented by the error and confidence parameters. Also, the difficulty of learning is 

proportional to the size of each individual sample in the sample set provided for learning, 

given by k. C is PAC learnable if some L can learn it with m samples, where m is bound 

by a polynomial function over k, the error, and the confidence parameters.  
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VC Dimension 

We use some concepts from statistical learning theory [Foe94] in this thesis. An 

important concept, widely used in machine learning, is that of the Vapnik-Chervonenkis 

dimension (VC dimension) [Vap98]. The VC dimension is a statistical measure of the 

capacity of a classification algorithm. Roughly speaking, it measures the ‘power’ of a 

classification algorithm. The task of learning a concept c, given a sat of samples, may be 

viewed as distinguishing which samples belong to the concept and which do not. Thus all 

learning problems in the PAC framework can posed as classification problems and all 

learning algorithms are also classification algorithms, making the VC dimension a useful 

measure of the power of any PAC algorithm. 

 

To understand the VC dimension we have to first consider the concept of ‘shattering’ 

[Vap98]. A classification model with a parameter vector V (i.e. the parameters used to 

obtain a specific configuration of the model) is said to shatter a set of data points {x1, x2, 

… xn}, if for any placement of these points, there exists a V that correctly classifies all of 

them.  

 

The VC dimension of a learning algorithm L is the cardinality of the largest set of points 

L can shatter. The VC dimension of L is related to how complicated L can be. 

Kolmogorov Complexity 

The Kolmogorov complexity [LV97] of an object is a measure of the computational 

resources it takes to specify that object. Usually, the object under consideration is a 

string, and the Kolmogorov complexity of a string may be understood as the size of the 
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smallest program that would generate that string. This program is written in some fixed 

universal programming language. 

 

There is no way to compute the Kolmogorov complexity of a string. Therefore it is a 

purely theoretical measure. However, generalized versions, or approximations to 

Kolmogorov complexity exist. An example of this is Kolmogorov-Levin complexity 

(sometimes called Levin complexity). It is a resource bounded generalization of 

Kolmogorov complexity.  It penalizes a slow program by adding the logarithm of its 

running time to the program’s length. This leads to a computable, though sometimes 

intractable in practice, version of Kolmogorov complexity. 

Learning in a Complex World 

The natural world is a complex place with many variables, factors, and dependencies. 

The complexity of learning increases exponentially as we add to it.  For example, 

consider the difference in difficulty of learning a Boolean function f(A,B) -> C versus 

another g(A, B, C, D, E, F) -> G based on their truth tables. The former requires just 4 

examples, while the latter requires 16 times more examples to sift through. The number 

of functions possible on an input of n variables is 2^n^n. So the number of hypotheses a 

machine has to sort through is even greater. 

 

There are many factors that make learning hard, not the least of which is that the 

difficulty of the learning task increases exponentially with the size of the task. Given this 

growth in complexity, how is it possible to learn efficiently in this system? 
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Simplification of Learning 

Most learning methods rely on constraining the learning task though some means to 

simplify learning. Such heuristics are usually domain specific in nature, and are often 

specified by human experts.  In this work, we study a general way of simplifying learning 

by breaking it into smaller tasks. Learning by concept decomposition is a pervasive 

process. In fact, we may even see it present in general scientific methodology. For 

example, rather than discover the entire body of physics in one go, we isolate and study 

subsystems of the natural universe, and then combine the knowledge gained with 

preexisting knowledge.  

 

Learning by decomposition of concepts is a pervasive process in computer science. Of 

the various kinds of decompositions possible, we consider example decomposition, where 

each example in the training data z  is split into sub-examples ),,(= 21 iniii xxxx  , and 

each sub-example with its own label is used to learn a subconcept. Once all the 

subconcepts have been learned, they can be reassembled to yield the target concept tc .  

 

For example, in face recognition, each example may consist of an image of a face. This 

image may be divided into smaller images, with each smaller image consisting of a 

feature, like nose, eyes, etc.  

 

In this work, we present our research on probably approximately correct (PAC) learning 

of Boolean concepts by decomposing the examples presented to the learner. While 

learning by decomposition is used often, the subject has not received broad theoretical 
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treatment. Many questions remain open. The first obvious question is, what exactly is 

decomposition? What all may we decompose? How can we learn to partition the example 

into sub-examples? Then how do we learn the subconcepts? How can the learned 

subconcepts be reassembled? What are the advantages? And perhaps the most important 

question is, when will the savings obtained be greater than the overhead costs? A 

systematic study of the process of PAC learning by example decomposition yields 

insights into the answers to these questions. We provide a framework for example 

decomposition, and provide upper limits on its sample complexity. We also develop 

conditions under which learning by decomposition is advantageous.
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CHAPTER 2: RELATED WORK 

As we mentioned before, learning by concept decomposition is a pervasive phenomenon 

in nature and thus shows up in many sciences, and various forms of reasoning. So 

naturally, there exists a large body of algorithmic and experimental work that deals with 

problem decomposition directly or indirectly. Some of these approaches may be seen as 

special cases of the model presented in this thesis. Others are not directly relevant. Some 

of this work is not in machine learning, but operates on classes of problems that are 

decomposable, and thus is included here. Without attempting to be exhaustive, we 

overview some of the major contributions to developing the theory of decomposition. 

Pattern Theory  

The premise behind pattern theory [Gre07, Mum96] is that the universe can be expressed 

in a language of patterns. It postulates that compositional representations of the universe 

can be formed, and that these representations are commonly found in nature [Ale99]. 

That is, we can combine simple primitives according to some rules to form increasingly 

complex primitives and systems. Pattern theory inherently lends itself to a 

decompositional nature, because learning a compositional representation may be done 

best through isolating the components and the rules that combine them. This paradigm of 

learning in pattern theory has not received direct treatment in the PAC framework, 

though there are many examples of learning algorithms developed under its rubric. 

Feature extraction using pattern theory is discussed in [RNGG94] where the authors 

introduce a complexity measure called Decomposed Function Cardinality, and a 
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decomposition algorithm to minimize this measure. Another example of a pattern 

theoretic application to knowledge discovery using pattern theory may be found in 

[Gol95]. In this paper, the authors recursively decompose a function to its atomic 

elements. Pattern Theory allows extrapolation on available information based on the 

inherent structure in the data; it ports over to Knowledge Discovery in Databases 

naturally. 

Feature Extraction 

Feature extraction [HS03, GE06] is the process of generating a set of characteristic 

attributes from a given dataset. As such, feature extraction is very close to learning by 

decomposition, because each feature may be considered a decomposed subpart of the 

problem being learned. As it stands today, feature extraction is primarily an empirical 

science, with little theoretical background. Most of the theoretical work pertains to 

individual algorithms [HKCWL03, ZKF02, MM05] or low-level feature extraction 

[Now77, Foe94]. Baxter [Bax00] shows an example of how feature extraction may be 

considered in the PAC framework. Though primarily thought of as an image-processing 

field, feature extraction is a commonly occurring process across various fields. Most 

science involves the extraction of abstract features by looking at raw data, and then 

finding interconnections among those features. We discuss feature extraction in greater 

detail as a case study in chapter 4.  

Clustering 

Clustering [Rom04] is the partitioning by classification of a data set into different 

subsets, so that the data in each subset share some common trait. This trait is expressed as 
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proximity according to some defined distance measure. Thus clustering may be seen as 

decomposition of data into smaller spaces. The clusters may be seen as decomposed 

elements of a larger dataset. Conceptual clustering [MS84, SM86] takes another step 

towards machine learning by concept description for each generated class. Here, a 

descriptive concept is generated for each cluster. Usually, conceptual clustering 

algorithms also form hierarchical structures relating the concepts. A variety of methods 

have been developed where the description may rely on logic (e.g., [Fis87]), or 

probabilistic mechanisms (e.g., [TB01]). 

Meta Learning 

Since meta learning [BK90, Mau05] involves learning many smaller concepts while 

gaining global bias, it touches upon learning by decomposition. Baxter [Bax00] shows 

that a learner embedded in an environment of related tasks can automatically acquire 

bias. This is directly relevant to learning by example decomposition. The details are 

elaborated upon later in this thesis in chapter 5. 

Dynamic Programming 

Dynamic programming [CLR90, Rom04] was introduced in its modern form by Bellman 

[Bel57] in the 1950s. It is an example of how decomposition is formalized and used in 

computer science. Dynamic programming is a problem solving methodology that solves a 

large problem by finding optimal solutions to its subproblems. Dynamic programming 

works on problems exhibiting the properties of optimal substructure and overlapping 

subproblems. Optimal substructure means that an optimal solution to a subproblem would 

form part of an optimal solution to the global problem. Overlapping subproblems means 
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that the same subproblems may be used to solve different larger problems, i.e., they are 

reused. Since dynamic programming involves finding subproblems to a larger problem, it 

works by decomposition of the task. However, dynamic programming is not a learning 

algorithm. It also works in a more restricted domain than that presented in this paper. 

Interestingly, overlapping substructure in a problem is a factor that contributes to the 

savings obtained in learning by decomposition. We discuss this idea further in chapter 5 

under the heading ‘reuse of subconcepts’.  

Domain Decomposition 

Domain decomposition [CM94, Qua92] is a method that solves a boundary value 

problem by splitting it into smaller boundary value problems. A boundary value problem 

for an ordinary differential equation or a partial differential equation consists of the 

equation and its boundary conditions. Since any physical differential equation would 

have a boundary value problem, they occur prolifically in physics. If we can decompose 

the domain into sub-domains, large savings in the size of the problem are obtained. In 

[Chan87] some preconditions for domain decomposition are discussed. Domain 

decomposition is interesting to mention here, not only because it relies on splitting a 

larger problem into smaller ones, but also because of its heavy correlation with the 

natural sciences. It hints that decomposability is an inherent characteristic in natural 

representations, thus supporting the case for learning by decomposition. 

Divide-and-Conquer Learning 

Dietterich [Die00] introduced the term divide-and-conquer learning and outlined some 

research questions in the field. This methodology seeks to decompose large input sets 
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into smaller more manageable ones. Either the input set, or individual examples may be 

divided. Divide-and-conquer is different from decomposition. In the former, division is a 

design decision, and can be varied by the learner. In the latter, however, decomposability 

is a property of the concept being decomposed and the lines along which to decompose 

must be learned. 

Separate and Conquer Learning 

Separate and conquer learning [Fur99] was introduced in [Mic69] as the covering 

strategy. This strategy involves recursively searching for rules to explain subsets of the 

training instances until each example is covered by at least one rule. It is possible for 

separate and conquer to involve example decomposition, but it corresponds more closely 

to a specific methodology for domain decomposition 
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CHAPTER 3: FRAMEWORK FOR CONCEPT DECOMPOSITION 

The complexity of learning increases with the representational size of a concept. The 

combinatorial nature of adding variables to a system makes learning infeasible fairly 

quickly in anything but the most trivial systems. In nature, complex learning is usually 

achieved by learning sub-parts of the problem separately, and then combining them 

together. So it is of much interest to formally study the process of learning by 

decomposition. 

 

We first formally define PAC decomposability and study the case when it's 

advantageous. We then discuss the process of learning by decomposition and provide 

sample complexity bounds for each of the steps in the process. We combine these bounds 

to obtain the conditions for propitious concept decomposition. 

Posing the Problem Formally 

To decompose a learning problem, we have to split the learning task into smaller 

tasks, learn them separately, and then put them back together to form a coherent solution 

to the original problem. Thus, a given target concept tc  is decomposable if there exists an 

equivalent representation  

).,,(= 21 nat cccfc   

 

It is desirable that decomposition does not introduce error or reduce the likelihood of 

learning the task by unacceptable amounts. 
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Definition 2 (PAC decomposable). A target concept k
t Cc  , where 1k , is PAC 

decomposable within confidence parameter   and accuracy parameter   if   

• There exists a PAC learning algorithm L  that splits tc  into nccc ,, 21   such that 

),,(= 21 nat cccfc   within accuracy and confidence parameters L  and L  respectively.  

• na cccf ,,, 21   are PAC learnable within accuracy and confidence parameters ff  ,  

and nn  ,,,,,, 2211  .  

•    1)(1))(1(1
1= i

n

ifL  

•    1)(1))(1(1
1= i

n

ifL   

  

We may introduce the additional constraint that such decomposition should benefit the 

learning process by reducing its complexity. Though any complexity measure may be 

studied, we consider the benefits of concept decomposition on sample complexity, which 

is the implicit complexity measure for the rest of the thesis. For a subconcept to be 

discoverable within given confidence and error parameters there must be a sufficient 

amount of information about it present in the input examples. Not only that, this 

information must be less than the information required to learn tc , or there is no reduction 

in sample complexity gained by decomposition. So for a subconcept ti cc   with given 

accuracy parameter i  and confidence parameter i , the sample complexity must be less 

than the sample complexity for learning tc . In fact, the combined sample complexity of 

the subconcepts nccc ,, 21  , the cost of decomposing the examples, and af  must be less 
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than the sample complexity for .tc  Let cS  be the smallest set of examples that allows us 

to learn a concept c , and the cardinality of a set S be given by |S|. Note that this lower 

bound |Sc| is the sample complexity of c, i.e. the cost of learning c given some accuracy 

and confidence parameters, and size of samples. Then a concept is propitiously 

decomposable if 

|,|||""),,,(=
1=

21 Lfic

n

i
tcnat SSSSthatsuchcccfc    

where | LS | is the cost of decomposing the examples.  We union SL, Sf, and Sc for the 

subconcepts before we take their cardinality because some samples may serve to learn 

multiple concepts. These samples have to be considered only once as they do not add to 

the sample complexity a second time. The cardinality of the union of all these sets gives 

us the cost of decomposing the examples, learning the subconcepts, and then putting 

them back together again, with no sample counted twice. 

 

If we add this condition to PAC decomposability, we have the definition for propitious 

PAC decomposability. 

 

Definition 3 (Propitiously PAC decomposable). A target concept kt Cc  , where 1k , 

is propitiously PAC decomposable if   

• There exists a PAC learning algorithm L  that splits tc  into nccc ,, 21   such that 

),,(= 21 nat cccfc    

• ncccf ,,, 21   are PAC learnable  

• 
tci

n

ifL    1)(1))(1(1
1=
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• 
tci

n

ifL    1)(1))(1(1
1=

  

• ||||
1= Lfic

n

itc SSSS    

 

So a concept is PAC decomposable if it may be learned as subconcepts and then put 

together while staying within the confidence and error bounds. It is propitiously so if all 

this can be done so that the sample complexity of the learning problem is reduced. This, 

of course, is the main motivation. There are some important points to note about the 

definitions introduced above.   

 

• The task of learning tc  is replaced by many smaller learning tasks. These are the i  

subconcepts, f , and the concept learned by L . 

 

• Computing the sample complexities of the subconcepts is not straightforward, as the 

same example may serve towards learning multiple subconcepts. Therefore we take the 

union of all the examples required for the subconcepts when computing sample 

complexity for the decomposed concept. 

 

• L  is the learning algorithm that decomposes the examples for learning the subconcepts. 

This may range from a trivial to a highly complex task. There would exist some natural 

boundaries along which an example might be decomposed. So problem specific bias 

would play an important role here. The question of what subconcepts are useful to learn, 
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and which are chimerical, is also intimately related to how the examples are decomposed. 

We consider this problem in greater detail in the discussion section. 

 

• The function af  provides the process of recombining the subconcepts into the original 

target concept, and must be learned. In many cases, af  may be seen as reverse 

engineering the concept learned by L . 

 

• In our definition, we assume errors to be multiplicative. But to be more precise they 

depend on exactly how the subconcepts are amalgamated, or af . 

 

• ),,(min|=| cc pS .  

 

We consider learning Boolean concepts in this thesis. That is, for a given set of binary 

inputs, the output of the concept is either positive (1) or negative (0). 

 

Analyzing the Process of Concept Decomposition 

In this section, we discuss the sample complexity of learning subconcepts. Besides the 

usual PAC requirements, a subconcept must be isolated from the target concept, which 

poses its own restrictions. 

 

Labeled examples are required for PAC learning. To discover a subconcept ic , we have to 

isolate the examples that can help learn it, i.e. the examples that provide a positive or 
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negative example for ic . Can the examples drawn from X  for a target concept tc  be used 

to learn ic ? We have to determine how examples drawn from YX   are relevant for 

learning nccc ,, 21  . 

 

Sample complexity for learning by concept decomposition may be analyzed under two 

different settings. The first is when it is possible to obtain labels for the subconcept-

examples. This may correspond to a real world situation where the learner has some bias 

concerning the subconcepts. In this case, we assume that there are oracles present for the 

subconcepts to generate labels for examples. The other case is the stricter condition that 

there are no oracles present for learning the subconcepts; the only oracle generates labels 

for the target concept tc . This corresponds to the real world situation where we are given 

a concept to learn, and without any a priori knowledge we must determine if the concept 

is decomposable, and then discover the decomposition and learn it without any extra 

help. To do so, we have to take the jump to unsupervised learning. In this thesis, we only 

consider the former case. 

 

Here we analyze the sample complexity of learning by concept decomposition with 

oracles available for the decomposed subconcepts. Learning a concept by decomposition 

consists of the following steps   

1. Divide the hypothesis space for the target concept into spaces for the subconcepts.  

2. Learn each subconcept using its space.  

3. Combine the learned subconcepts back together to form the target concept.  

We discuss these steps in greater detail in the following sections. 
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Dividing the Hypothesis space 

To learn a concept by decomposing it, we would first have an algorithm learn the 

divisions of the hypothesis space corresponding to the subconcepts. We discuss two ways 

of splitting the hypothesis space for the subconcepts. The first is when different subsets 

of the hypothesis space are applicable to different subconcepts. In this case, the 

hypothesis space has to be partitioned into subsets corresponding to subconcepts. The 

second case is the focus of this thesis, when a part of each example is applicable to a 

subconcept. Here, we have to partition each individual example into smaller substrings 

corresponding to subconcepts. 

Domain Decomposition 

 Examples for the subconcepts are drawn from space }0,1{X . It is possible for some of 

these examples to be relevant for a particular subconcept. In this case each subconcept ic  

has a probability distribution iD  on X . Define the relevant set for a subconcept as the 

subset of the sample space that is relevant to learning the subconcept. The elements of 

this set would have a non-zero probability of being drawn. Formally, the relevant set for a 

subconcept ic  is  

0}.)(,|{:=  xDXxxR ii  

If we knew the relevant sets, we could classify examples perfectly and we would have 

learned all the subconcepts. So the learning task becomes one of classifying each drawn 

example to a subconcept, until we have seen enough examples of each subconcept to 

have learned them all within the required accuracy and confidence parameters. 
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Example Decomposition 

Consider an example Xx  of length k . Since we are considering Boolean concepts in 

this thesis, x  is a string of bits kbbb 21 . For a subconcept of tc , it is possible that only a 

part of x  would suffice. In this section we will consider the case where a substring of 

each example is relevant for a particular subconcept. The definition of relevant set 

changes in this case. The subset of bits in an example that provides an example for a 

subconcept forms its relevant set. We assume that these bits are always contiguous 

(discussed later as the assumption of contiguity) so the relevant set would, in fact, consist 

of the bits of a substring. 

 

Definition 4 (Relevant set). We say that bits },{ 1 uaaa bbb    in an example Xx  

provide the relevant set, iR , for a subconcept ic  if the substring in that location provides 

a relevant example for ic .  

 

So the bits of substring of length u belong to the relevant set, iuaaa Rbbb  1, , for a 

subconcept ic . We shall refer to the relevant substring location for ic  as
icx . The relevant 

sets of interest are the largest non-spurious sets within an example. 

 

Example 1 The HIV (Human Immunodeficiency virus) has a very short life cycle, which 

may be as short as 1.5 days. It also lacks proofreading enzymes to correct errors during 

the process of reverse transcription. These two factors give HIV a very high mutation 

rate. Thus a combination of three or four anti-retroviral drugs, called Highly Active Anti-
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Retroviral Therapy (HAART), is given to patients. This is more effective than trying one 

drug after another, to which the virus tends to develop quick immunity. 

 

The reason for the success of this treatment may be understood through example 

decomposition. Since evolution is a learning process, the evolution of the HIV virus may 

be viewed as a 'learner' that is trying to model an immune virus. Consider HAART 

therapy consisting of four drugs, ,,, 321 ddd  and 4d . In this case, the 'example' that the 

learner sees is 4321 dddd . If only the first drug is used, then the example the learner sees 

is 1d . Consider the treatment where a single drug is given, and changed to the next one 

only if treatment begins to fail. In this case, we have effectively decomposed the example 

into its four sub-examples. This allows the virus to learn through decomposition, greatly 

reducing the time it takes to develop immunity.   

 

We make the following assumptions while analyzing example decomposition in this 

thesis. Some of these assumptions reflect commonly encountered conditions in learning, 

and yet others simply facilitate analysis. A point to note is that these assumptions define 

the class of learning problems we consider. To apply this framework to a different class 

of problems, we would start simply by revising this assumption set.   

 

• Assumption of total relevance: We assume that every subconcept ti cc   has a non-

null relevant set in every example for tc .  
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• Assumption of consistent relevance: We assume that the relevant set for a given 

subconcept ti cc   is consistently found in the same location in the string for every 

example for tc .  

• Assumption of contiguity: We assume that the bits in iR  for any subconcept ic  are 

contiguous, i.e. they belong to a single substring.  

• Assumption of non-overlap: We assume that for some bit xb , where x  is any 

example for tc , if icb  and jcb , then ji = .  

 

In example decomposition, dividing the hypothesis space for the target concept into 

spaces for subconcepts involves dividing each example into substrings for the 

subconcepts. With the above assumptions, each example would be neatly divided into n  

non-overlapping substrings, one for each subconcept. Since the subconcepts come 

together to form a compete description of the target concept, there would be no part of 

the example left over in noiseless learning. So the task of dividing an example for n  

subconcepts is one of inserting 1n  markers in the string for the example. For a string of 

length k , the hypothesis space for inserting 1n  markers is 1)(1)(  kn . Assuming no 

other bias, this is also the sample complexity of example decomposition.  

1))(1)((=)
1

,
1

,(  knkp
exex

ex 
  (1) 
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Learning the Subconcepts 

Once the relevant substring iR  of example Xx  has been established, it may be used to 

learn the subconcept ic . At this point, this may be considered straightforward PAC 

learning. The upper limit on sample complexity of PAC learning a concept is given by  

]]
1

[ln(2)ln)(1)[(
1 ][


 k

VC CDk  

Each example may be used to learn multiple subconcepts. In fact, with the assumption of 

total relevance (see previous subsection), each example may be used to learn every 

subconcept. For simplicity of analysis, we may assume that the average relevant substring 

for each subconcept is nk/  in length for examples of length k  and n  subconcepts. We 

also assume that all the subconcepts need to be learned within the same accuracy and 

confidence parameters, sc  and sc . Then the sample complexity of learning a subconcept 

is  
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  (2) 

 

With the assumption of total relevance, the sample complexity of learning all n  

subconcepts is also given by the above equation. 

Amalgamation 

The final task in learning by decomposition is to combine the learned subconcepts 

nccc ,, 21   to give the target concept tc . This is achieved by combining the classifiers for 
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nccc ,, 21   conjunctively. So for an example x , if )()()( 2211 nnccc cxcxcx   , 

then tRx . 

 

This sort of reassembly does not require any learning. So it does not influence the sample 

complexity of decomposition directly. However, in such a scheme, the error would be 

multiplicative. So,  

n
sctc )(1=)(1    

).(1=)(1 sc
n

tc    (3) 

 Similarly, for the confidence parameter, we have that  

).(1=)(1 sc
n

tc     (4) 

Conditions for Propitious Concept Decomposition 

For a target concept to be propitiously decomposable, the aggregate sample complexity 

of decomposition, learning the decomposed subconcepts, and their amalgamation must be 

less than the sample complexity of learning the target concept without decomposition. So 

we have  

).
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  (5) 

 

Using equation 5 we can come up with the condition for propitious PAC decomposition 

in terms of the VC dimensions of the concept spaces. 
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Theorem 1. Let a Boolean target concept k
t Cc   be learned within accuracy and 

confidence parameters 
tc  and

tc , using examples of size k , and by decomposition into 

n  subconcepts of equal size, accuracy, and confidence parameters. Then the condition 

for propitious PAC decomposition is given by  
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 where )( k
VC CD  is the VC dimension of kC  and )( n

k

VC CD  is the VC dimension of n

k

C .  

 

Proof. Substituting equations 1 and 2 in equation 5, we get  
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Substituting from 3 and 4 in the above equation, we get  
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 This is the desired result.  

 

Theorem 1 gives us the condition for propitious PAC decomposition in terms of VC 

dimension. We may use this relationship to obtain the condition for propitious 

decomposition in terms of the cardinalities of the concept spaces for the subconcepts and 

the target concept. 

 

Theorem 2. Let X  be a finite set and let F  be a class of concepts on X  such that all 

members of F  have length k . If )(= k
VC CDd  is the VC dimension of F , then   

.1)(2||2 dkd F   

 

Proof. We know from [Nat91] that  

.1)||(||2 dd XF   
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Since all members of F  have length k , X  can have cardinality of at most k2 . 

Substituting this value in the equation above gives the desired result.  

 

Theorem 3, Let a Boolean target concept k
t Cc   be learned within accuracy and 

confidence parameters 
tc  and

tc , using examples of size k , and by decomposition into 

n  subconcepts of equal size, accuracy, and confidence parameters. Then the condition 

for propitious PAC decomposition is given by  
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Proof. Taking log2  of the inequalities in theorem 2,  
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Substituting the above values of d  for the VC dimensions in theorem 1, we get  
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This is the desired result.  

 

This theorem gives the strict bound which, if satisfied, gives the condition for propitious 

PAC decomposition in terms of cardinalities. However, it assumes that the learning 

machine used for learning the target concept is the weakest possible, while the one used 

for learning the subconcepts is the strongest possible. This does not reflect real world 

conditions. We must consider the relationship between the VC dimensions )( k
VC CD  

and )( n

k

VC CD . The machine used to learn the target concept must be at least as powerful 

as the machine used to learn the subconcepts. That is to say,  

).()( k
VC

n

k

VC CDCD    (7) 

 This condition must be kept in mind while applying theorems 1 or 3. In fact, in most 

cases the machine used to learn the subconcepts would be significantly weaker than the 

machine used to learn the target concept. 

 

There is one point of note about the results we obtained in this section. Despite the 

increased accuracy and confidence requirements of learning the subconcepts, these 

results tell us that in most cases it is highly desirable to decompose a subconcept. 

The reason for this attractiveness is the low cost of example decomposition, given by 

equation 1, for the class of learning tasks considered in this thesis. For other classes of 
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learning tasks, this cost may be too high justify decomposition. We discuss this cost 

further as the 'relevant set detection problem' in later chapters. 
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CHAPTER 4: FEATURE EXTRACTION  

Concept learning by example decomposition as presented in this thesis is a meta-theory. 

It cannot directly be used on data; instead it can be used to design algorithms which in 

turn work with raw data. Another way this meta-theory may be used is to generate or 

explain existing theories. 

 

In this chapter we use our work to develop a theory for an important field of research, 

feature extraction. Though successful empirically, there is no common theoretical 

background for feature extraction as a whole. Many important questions need answering. 

These include: What causes the emergence of features in data? How do these features 

interact? How may these features be detected in a general setting? And finally, what 

exactly is a feature? Feature extraction is primarily thought of as an image recognition 

field, but its scope extends to all learning problems. Popular algorithms like PCA, used in 

diverse fields, perform feature extraction. In this chapter, we translate our theoretical 

terminology and framework to reason about feature extraction. This framework is used to 

develop some new results, including some constructive theorems and an upper limit on 

the number of features possible in a given example set. We also use the framework to 

develop an algorithm for feature extraction from scratch. 

Introduction 

Feature extraction is the process of generating a set of characteristic attributes from a 

given dataset. Feature extraction is primarily an empirical science, with little theoretical 

background. Most of the theoretical work pertains to individual algorithms [HKCWL03], 
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[LLS02], [MM05] or low-level feature extraction [NA02], [Foe94]. This work aims to 

provide a unifying understanding of feature extraction as a pervasive learning process 

present across many disciplines. A feature is simply a regularity existing in a given data 

set, and as such may be applied to any process like various kinds of learning, theory 

building, psychology, or image recognition. We use the specific term ‘feature extraction’ 

because of the top-down pattern-recognition like nature of our theoretical setup (to be 

introduced in later sections). Generally speaking, feature extraction involves constructing 

a predictive hypothesis on any (possibly non-visual) data. This hypothesis is the extracted 

feature. For example, the divine proportion [Hun70] may be thought of as a commonly 

occurring feature in the natural sciences. Repeated geometric shapes may be considered 

features in image recognition. The concept of momentum is a feature on a pool table. 

Most science involves the extraction of abstract features by looking at raw data, and then 

finding interconnections among those features. 

 

Feature extraction has not been studied sufficiently in a general theoretical setting. Even 

the definition of what exactly is a feature has not been satisfactorily answered. What 

characterizes a feature? How do features come into being? How can we identify features? 

Are there any general properties present in all features?  What sort of relationships may 

exist among features, and how may they be discovered efficiently? These are all 

interesting questions with wide applications, but have not been studied adequately.  One 

of the reasons why a broad theoretical treatment of feature extraction has been 

overlooked so far is the pervasiveness of the field. Wide usage and application of the 

term makes it difficult to find common ground. Another reason is that the field is 
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essentially new. Most feature extraction is computationally expensive, and efforts thus far 

have been focused on computational efficiency rather than theoretical thoroughness. 

 

The research presented here takes initial steps towards a more complete theoretical 

understanding of feature extraction in this thesis. New terminology and theoretical 

framework for feature extraction is introduced. The approach in this thesis is 

fundamentally different from other work in that we try to understand features not by their 

properties, but by first principles. A feature is studied from the vantage points of 

Kolmogorov complexity and computational learning theory.  Once a feature is clearly 

defined, we study the emergence of features, which yields a framework to understand the 

relationships among features. To seed our framework, we shall borrow some concepts 

from computational learning theory. 

Layout of the Chapter 

We use the framework developed in previous chapters to form a theory of feature 

extraction. This is achieved by understanding how features emerge in the training data, 

and what relationships among features look like. When these questions are answered in 

our terminology, a comprehensive picture begins to emerge. We complete the theory by 

describing the process of feature extraction in our terminology. 

 

Since a framework for feature extraction is a meta-theory (being a theory about a kind of 

learning), the first thing it would produce are theoretical results. These theoretical results 

may then be used to obtain applied results. Thus, we start by developing some 
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constructive theorems using our framework. We also provide an upper limit on the 

number of features possible in a given dataset. 

 

Finally, we analytically develop a learning algorithm using our framework. 

A Framework for Feature Extraction 

Consider examples {x1, x2 … xn} from an instance space X presented to a feature 

extraction algorithm. Feature extraction works on the principle that there is localization 

of some property within each example, or across multiple examples. This localization of 

a computational property (or regularity) leads to the identification of a feature. These 

regularities in the instance space are caused by an underlying target function. To 

understand these regularities, let us consider the target concept causing them. The target 

function t is 

t: Z  X. 

Z is the domain of t, and X is the instance space. Since t is a function, there exists a 

program P(t) for it. P(t) draws its input from Z and provides output to X. Let us call this 

program P(t) the target program. 

 

Definition 1: Let t be a target function 

t: Z  X. 

The target program P(t) is the smallest program for t. 
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The length of the target program should be as small as possible. This is in keeping with 

Occam’s razor. Not only is excess code wastage, a smaller description also tends to be 

the right one [Cha75] [Lev74]. So we propose the following restriction on P(t). 

 

Constraint 1: The length of P(t) is minimal. 

 

Next we study the target program to see how features arise in data.  

The Causes of Features 

In this section, we develop a framework to reason about features. Let us consider what a 

feature is. Through all the definitions and usages of the word feature, the common theme 

is that the elements belonging to a feature are somehow similar to each other, and 

different from the elements not belonging to that feature. So the primary quality of a 

feature is that there is something that distinguishes it from other entities. Stating this in 

computational terms allows us to define a feature. 

 

Definition 2: A feature f in an instance space X is a localization of some computational 

property among multiple elements of X. 

 

This definition of a feature provide rigor to our intuition. It is important to note that a 

feature is always spread over multiple elements. Even in cases like image recognition of a 

landscape, where the all the features, such as a regular shape leaves etc,  may be  present 

within a single example image, the feature is spread over multiple pixels. An example of 

a feature that exists among multiple members of X would be a cluster of two-dimensional 
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points. The instance space here consists of coordinates for each point, and the feature 

exists over a subset of such points as a cluster. So the localization of the feature-property 

may be in either a single member of X or among a subset of X, depending on how X is 

organized. But this does not affect the definition of a feature.  

 

Since it is the target program that causes regularities in the dataset, studying it helps us 

understand the emergence of features. By constraint 1, the length of the target program is 

minimal. Assume there is some section of code that needs to be computed multiple times. 

How will this section of code be represented in the target program? We may not simply 

write out this section multiple times, because that would cause redundancy, and we may 

not allow a minimal program to be redundant. Any computation that has to be performed 

more than once in a minimal program must be expressed in the form of a subroutine. 

There is a lower limit on the size of a subroutine. The savings in size provided by 

creating a subroutine must be greater than the cost of naming and calling it, else the 

minimalism constraint is violated.  

 

We formalize the idea of a subroutine with the help of the notion of a datapath. The 

datapath of a unit of data, b0, in program p is the path that b0 traces through the program. 

It is the sequence of statements that use b0 in their input in direct or computed form.  

 

Definition 3: The datapath of a unit of data b1 in program p is the sequence of 

statements (s1, s2… sn) such that  

b1  input(s1), and  
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output(si)  input(si+1), for all 1< i <n. 

 

Each datapath may be viewed as a string of statements. A subroutine would exist for 

repeated computation, i.e. if the datapaths of two separate inputs have a common 

substring. Consider a target program P(t) with input vector (b1, b2 … bk) with 

corresponding datapaths ((s11, s21… sn1), (s12, s22… sn2) …, (s1k, s2k… snk)). Assume that 

the datapaths of any two inputs share a common substring (si, si+1 … si+p) of length p; and 

p>c, where c is the small constant cost of creating and calling a subroutine. Then (si, si+1 

… si+p) must be written only once in P(t) in the form of a subroutine.  

 

These naturally emergent subroutines are very important, as it turns out that these 

subroutines are the causes of features in the instance space. Intuitively speaking, each 

subroutine is a small program performing a computational task. Thus a subroutine S will 

impart the computational characteristics of the task it performs to each input that passes 

through it. The set of outputs of S will share a common computational property, imparted 

by S. By definition, the set of outputs of S are now part of a feature. So subroutines 

correspond to features in the instance space. 

 

Theorem 1: A given feature f in instance space X is associated with a corresponding 

subroutine Sf in the target program for X, and vice versa. 

Proof: Proof follows from definitions. We first show that every subroutine causes the 

emergence of a feature. Then we show that every feature would have an associated 

subroutine. 
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a) A subroutine in the target program always causes the emergence of a 

feature: 

A subroutine, by definition, is used multiple times. Thus, for a subroutine Sf in the target 

program for X, there would be multiple elements {xS1, xS2 … xSk} in X that are influenced 

by Sf. And since all these elements have passed through the same computational 

procedure (the subroutine Sf), they would all share a computational property imparted by 

Sf. Thus {xS1, xS2 … xSk} would be the elements of a feature, by definition of a feature. 

b) A feature always has an underlying associated subroutine in the target 

program: 

Let a feature f be present in the elements {xf1, xf2 … xfk} of X, where k>1. By definition of 

a feature, these elements share some computational property. Since a computational 

property may only be imparted by a computational procedure, the elements {xf1, xf2 … 

xfk} pass through the same computational steps {s1, s2 … sp} in the target program for X. 

This series of steps {s1, s2 … sp} is computed at least k times in the target program, once 

for each element. In order to avoid violating the minimalism constraint on the target 

program this series of steps must be expressed as a subroutine of length p that would 

impart the feature-property to {xf1, xf2 … xfk}. 

Q.E.D. 

Since a subroutine in the minimal target program is always associated with a feature and 

vice versa, they may be viewed as integral parts of each other.  

 

Definition 4: The associated subroutine Sf for a feature f is the subroutine that imparts 

the feature’s computational property to the elements of the feature. 



 40

 

Definition 5: The feature set {f} for a given subroutine Sf is the subset of instance space 

that is computed by Sf. 

 

The feature set may alternatively be defined simply as the elements of a feature. 

Relationships Among Features 

In image recognition applications, an often-overlooked element is the relationships 

between the different features. Relationships between features become of prime 

importance if we are considering features generally across different fields. For example, 

in science, the first step is to collect data; then comes the process of theory building, 

which involves extracting features from the data, and finding out the relationships 

between them. It is these relationships that give science its inferential and predictive 

powers. As many scientists would attest, the processes of discerning features and 

relationships among them are interrelated, and one often aids the other. We shall be able 

to formalize this idea in later sections. Features in a given instance space may be related 

to each other, and influence each other. Before we study the nature of these relationships, 

our framework allows us to define ‘influence’ better. 

 

Definition 6: A feature f influences another feature g if the output of the associated 

subroutine for f, Sf serves as input in some form for associated subroutine for g, Sg. 

 

Note that the output of Sf need not directly serve as input for Sg. There may be 

intermediate computational steps, or the output of Sf may pass through another subroutine 
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before reaching Sg. The calling order of the subroutines forms a web of influence, the 

structure of the target program. This web is the structure of relationships between the 

features. The study of this web yields insights into how knowledge is organized. 

 

In this web, some associated subroutines are closer to the instance space than others. This 

leads us to the idea of the order of a feature. The order of a feature is, informally, its 

distance from the instance space. Lower order features can be extracted relatively easily, 

while higher order features require more work. 

 

Definition 7: the order of a feature f is given by the following 

1. A feature whose associated subroutine provides output directly to the 

instance space is order 1. 

2. A feature whose associated subroutine has output linked to a subset of the 

instance space and/or input of other subroutines has order n+1, where n is 

the highest order of all the features it influences. 

 

The idea of the order of a feature corresponds intuitively to the idea of the complexity of 

learning increasing with logical depth. 

 

Two features overlap if their feature sets have some common elements. 

 

Definition 8: Two features f and g are said to overlap if, for their feature sets {f} and 

{g}, 
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{f}  {g}   

 

The target program is a network of associated subroutines. Since higher order features are 

more difficult to extract than lower order features, it is useful for learning purposes to 

stratify this web by putting all features of a given depth into one layer. Layers quantify 

the complexity of learning associated subroutines. 

  

Definition 9: A layer k of features in an instance space X is the set of all features of the 

order k. 

 

 

Figure 1: Target program structure 

 

The terminology introduced in preceding sections defines concepts in feature extraction 

clearly and unambiguously. This allows us to talk about feature extraction in rigorous 

terms. The framework introduced above (i.e., the target program structure and associated 

definitions) does more than provide an understanding of how features emerge in data. 
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This structure helps us understand properties of features. One property that we have 

already touched upon is that lower order features are easier to discover than higher order 

features. In later sections we shall study some more such properties. Every little thing that 

we know about the target function helps us in learning it by acting as bias [Utg86]. So we 

hypothesize that these insights will ultimately help in the design of new feature extraction 

algorithms, and more comprehensive understanding of current ones. 

Feature Extraction as a Process 

In this section, we talk about the process of feature extraction as a whole. We shall use 

the terminology we have developed so far to sharpen our understanding of what goes on 

during feature extraction. The process of feature extraction is one of reverse engineering 

the target program from the training data. We look at the given data, identifying a pattern 

in some subset of the data, and then come up with a computational model to explain or 

generate that pattern. 

 

Definition 10: Feature extraction for a feature f is the process of modeling the 

associated subroutine Sf as closely as possible by first discerning the feature set {f} from 

the instance space X, and then by passing {f} as input to some learning method L. 

 

But there may be multiple related features in a given dataset. In this case we also have to 

discover these relationships to provide a complete understanding of the data. We may 

broadly divide the task of feature extraction into the following three steps. 

1. Feature set detection 

2. Individual feature extraction from a feature set 
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3. After multiple features have been extracted, learning the relationships between 

the features 

 

Learning an individual feature involves modeling its associated subroutine by looking at 

the feature set it generates. Of course, we have to discover the feature set first. Given 

below is an algorithm for extracting a single feature from X. 

 

ALGORITHM: EXTRACT SINGLE FEATURE 

Given: Instance space X, distance metric D, transform T, Learning algorithm L 

Output: A feature f in X demarked by distance metric D 

Given the instance space X, use transform T to transform X into an appropriate form, XT 

1. Use a clustering algorithm C using distance metric D to discover feature set {f} in 

XT 

2. Use learning algorithm L1 to discover the computational structure, Sf, of feature f 

in {f} 

END ALGORITHM: EXTRACT SINGLE FEATURE 

 

L1 may be any learning algorithm. This algorithm assumes the existing knowledge of a 

distance metric D and a transform T. However, in actual algorithms they have to be 

specified by a human expert or discovered using a learning algorithm. Both D and T are 

related to Sf, and thus in some cases may be thought of as being discovered along with it. 

Because of the fine distinction between D, T, and Sf, they are commonly understood to be 
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the same thing, and are usually lumped together into the hypothesis for the feature. But 

appreciating the differences between them helps us better understand feature extraction.  

 

Relationship Between D and Sf: The associated subroutine Sf imparts some property to 

all members of {f} making them computationally similar in some way. This property may 

be used as a distance metric D for a clustering algorithm C; in fact it would be an ideal 

problem-specific choice if we could find it. Thus if we find a highly successful distance 

metric, it may be a clue to the computational property that caused the cluster, giving us a 

clue for Sf. This means that we may use learning method L to discover D and Sf as the 

same thing. Theorems 2, 3, 4, and 5 give us some problem independent distance metrics. 

 

Relationship between T and Sf: The transform T is used to bring the input data set into a 

form more conducive for feature extraction. This may be viewed as ‘decoding’ the input 

data before learning. Since both T and Sf are computational procedures performed on {f}, 

in some cases they can be appended together and thought of as one. They are, however, 

different. An example would be where T is the Fourier transform. Here Sf may be 

completely independent of T.  

 

Relationship between T and D: The purpose of T is to prime the input data for the next 

step, clustering. So the choice of T should be such that clusters would readily and 

correctly form when distance metric D is used. 
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To extract all the features in a given instance space, we may repeatedly call the ‘extract 

single feature’ method. 

 

ALGORITHM: EXTRACT ALL FEATURES 

Given: Instance space X 

Output: The features in X and their interrelationships 

1. While there are features left to discover 

a. Call EXTRACT SINGLE FEATURE to discover feature fi 

2. For i = 1 to n 

a. For j = i+1 to n-1 

i. Use learning method L2 to discover relationship between features fi 

and fj   

END ALGORITHM: EXTRACT ALL FEATURES 

 

The ‘extract all features’ algorithm serves to illustrate the different steps required to 

extract features. Most algorithms perform these tasks in one form or the other, but not 

necessarily in the order or exact form suggested above.  

 

The first step in this algorithm is to extract all features in the data. The problem here is 

that we do not know the number of features in the dataset in advance. Usually, the 

algorithm would run until it could not discover any new features in the data. This does 

not mean there are no features left, it means that there may be features but they are too 

complex to be elicited by our algorithm. The number of features in the dataset needs to be 
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estimated by existing algorithms like SIFT [Low99], and there are no theoretical 

guidelines as to what this limit should be. A human expert usually sets it. Later in this 

thesis, we come up with an upper limit to the number of features possible in a given 

dataset. 

 

The algorithm ‘extract all features’ is a bit naïve. We may write cleverer algorithms that 

take advantage of multiple features in an embedded environment. We present one such 

algorithm in later sections when we discuss feature extraction using mutual information. 

Results and Applications 

In this section we provide some constructive theorems, which may be used to create or 

enhance feature extraction algorithms. Also, we derive an upper bound on the number of 

features possible in a given dataset. We discuss the learning of features in light of our 

framework. Finally, we analytically develop a new method for feature extraction using 

our framework. 

How to Extract a Feature 

In the framework developed in the previous sections, we looked at the idea of a feature 

set sharing some property. We looked at the program/subroutine generating the set. Now 

we consider what it would look like to a feature extraction algorithm. 

 

It is interesting to note that if the regular parts of the instance space were represented as a 

string by appending its elements together, then the target program would be the 

Kolmogorov complexity of that string [LV97]. 
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Theorem 2: All elements of a feature set have similar Kolmogorov complexity, unless 

the elements overlap with another set. 

Proof: Since the target program P(t) is minimal, all subroutines Sf1, Sf2,… Sfn in P(t) are 

minimal for the tasks they accomplish. Consider a feature set {f} consisting of elements 

{xf1, xf2 … xfk} of X, where k>1. The Kolmogorov complexity Ki for {f} is its datapath, or 

the length of the subset of target program P(t) it passes through. For each element xi of 

{f} that does not belong to any other feature, 

Kf = |Sf| + cf 

Where cf is some constant and |Sf| is the length of Sf. 

Q.E.D. 

 

Theorem 2 goes towards providing a theoretical understanding of the ‘sameness’ of 

feature set elements. Theorem 2 would be constructive if we used some method sensitive 

to Kolmogorov complexity, for example Kolmogorov-Levin complexity [Sch97]. 

However instead of an abstract approach like Kolmogorov-Levin complexity, we discuss 

some more commonly used, well-understood properties that arise due to the sameness of 

feature set elements.  

 

In the previous section we saw some general algorithms to extract features. But how do 

we translate these algorithms into practice? We need practical ways of determining 

feature sets. We need usable values for transform T and distance metric D. Of course, we 

cannot have the best distance metric, Sf. If we knew this property we would actually have 
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the associated subroutine for the feature and the process of learning would be complete. 

However, using our framework we can come up with some indirect properties of features, 

such as kurtosis, that may be used to discover them. Kurtosis of a sample set measures 

how the values in that set are concentrated around the center of the distribution. Thus it 

measures the ‘peakedness’ of a sample set. The kurtosis of all elements in a feature set 

would tend to be similar, since those elements have passed through the same datapath. 

 

The structure of the target program forms a directed graph. The nodes of this graph are 

the associated subroutines, and the edges represent the calling order of the subroutines 

(or, equivalently, the data flow). The directions of the edges are given by the direction of 

data flow. There would always be a root node representing the input to the first 

subroutine in the target program. The output of this initial subroutine would flow 

(possibly through various other subroutines) to the instance space, generating features in 

the training data. This flow would form a sub-graph in the minimal program. Certain 

properties impose a partial order on this structure. Examples of such partial orders form 

the core of the next three theorems. 

 

Theorem 3: Higher order features have greater influence than lower order features in a 

sub-graph. 

Proof: Consider the associated subroutine of a feature f with order k>1. Since a 

subroutine is used multiple times, it influences at least two features, forming at least two 

sub-graphs. Every feature in either one of these sub-graphs will be influenced by f.  

Thus f will have more influence than any lower order feature in its sub-graphs. 
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Q.E.D. 

 

The next theorem deals with the rate of change of feature set elements in a temporal 

system. First, we offer a straightforward lemma. 

 

Lemma 1: The elements of a feature set have similar rates of change. 

Proof: Follows from theorem 2. 

 

The less obvious property arises when we look beyond individual features, and consider a 

web of features embedded in a system. 

  

Theorem 4: The rate of change of feature set elements increases monotonically with 

decreasing order of the feature in a sub-graph unless  

a. The target program directly modifies the rate of change. 

b. The changes negate each other. 

Proof: Feature set elements are the output of the features’ associated subroutine. For a 

given feature f in layer n, let f be influenced by features g1, g2…, gk. Assuming that the 

changes do not negate each other and that the target program does not modify the rate of 

change (e.g., by setting its input to zero), then the rate of change for f, R(f), is in the range 

MAX(R(g1), R(g2)…, R(gk)) ≤ R(f) ≤ R(g1) + R(g2) +…R(gk) 

Since the rate of change is additive 

R(f) = a0 * (influence on f), 

where a0 is some constant 
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Then theorem 2 gives us 

R(f) = a1 / (order of f), 

where a1  is some constant. 

Q.E.D. 

 

We may impose a similar property on kurtosis of a feature set. 

 

Theorem 5: Kurtosis of a feature set increases monotonically with decreasing order of 

the feature unless directly modified by the target program. 

Proof: Consider a feature f with kurtosis Kurt(f). Let f be influenced by features g1, g2…, 

gk. Kurt(f) is in the range 

MIN(Kurt(g1), Kurt(g2)…, Kurt(gk)) ≤ Kurt(f) ≤ (1/k2)* i Kurt(gi) 

Assuming g1, g2, … gk have similar variances. 

From the above relation 

Kurt(f) = a0 * (influence on f), 

where  a0 is some constant. 

Then theorem 2 gives us 

Kurt(f) = a1 / (order of f), 

where a1 is some constant. 

Thus every instance of multiple influences tends to increase the kurtosis of the target, 

unless the target program directly manipulates the kurtosis. 

Q.E.D. 
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The theorems given above are constructive in nature as they provide bias for feature 

extraction algorithms. They may be used by themselves or in conjunction with other 

biases to extract features. 

 

A problem we discussed earlier was estimating the number of features present in a given 

dataset. A theoretical upper bound does not exist in current literature. However such a 

value is required in many learning algorithms such as SIFT [Low99]. A simple 

combinatorial count where every combination could be a feature yields the number of 

features possible in a given instance space X of cardinality p to be 2p-1, which is the 

number of non-empty subsets possible in X. However, it is intuitively clear that all such 

combinations could not represent useful features. Our intuition turns out to be right; the 

number of useful features possible in a given dataset is much smaller. We derive such an 

upper bound below. 

 

For convenience, let us assume that the size of each element of X is uniform, given by s. 

 

Lemma 2: The size of a minimal program cannot be greater than the size of the output it 

produces within some small additive constant. 

Proof: This is a basic result from Kolmogorov complexity. Let some output O be 

produced by a minimal program P. If we view O as a string, then the size of P would be 

the Kolmogorov complexity of O. The Kolmogorov complexity of a string cannot be 

greater than the length of the string itself, within a small additive constant. Thus,  

|P|  |O| + c 
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Where c is a small constant. 

Q.E.D. 

 

Theorem 6: The upper bound on the number of features, n, possible in a given instance 

space X, where s is the size of each element, is given by 

n*log(n)< |X|*s 

Proof: The maximum number of subroutines present in a target program would be give 

by 

(Maximum target program size) / (minimum subroutine size)  (1) 

The size of the instance space is |X|*s, where |X| is the cardinality of X and s is the size of 

a single element of X. By lemma 2 this is also the maximum size of the target program. 

Ignoring the constant, the upper limit of target program size is, 

Maximum target program size = |X|*s    (2) 

Now we calculate the minimum size of a subroutine. Since a subroutine is defined by its 

usefulness in saving space, the size of a subroutine should be at least more than the cost 

incurred in calling it. If there are at most n subroutines, then we need log(n) bits to 

uniquely name them. So, for n subroutines 

Minimum subroutine size > log(n)   (3) 

From (1), (2), and (3) 

n < |X|*s/log(n) 

 n*log(n)< |X|*s 

Q.E.D. 
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This upper bound includes the case where each example in the instance space would have 

different features to offer. Let us consider an important special case where the features 

present in each example would be exactly the same. For instance, in face recognition, the 

features such as eyes, nose, etc. may exist in every sample of the instance space. In this 

case, any one example could have all the features that are present in the entire instance 

space. Here, the target program may be considered to be the program that generates one 

example, and we would still have all the required associated subroutines. The upper 

bound on the number of features is greatly reduced in this case. Here, all the features 

possible in X can be present within a single (possibly idealized) element of X. 

 

Theorem 7: The upper bound on the number of features, n, possible in a given instance 

space X is given by 

n*log(n)< s 

Where s is the size of an element xi of X such that, for any feature f, 

if f  X, then f  xi 

Proof: The proof is similar to the proof of theorem 6 except that the maximum target 

program size is limited by the size s of sample xi. 

Q.E.D. 

 

 

The framework introduced in this thesis eliminates chimerical or useless features, which 

are otherwise included in a simple combinatorial count. This is more reflective of the real 

world where an unnaturally large number of useful features do not exist. In fact, 
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extracting even a small number of useful features is a painful business. It is also 

important to note that the size, and not the cardinality alone, of the instance space are 

considered to derive this upper bound. This allows for the size and granularity of the 

elements of the instance space to be taken into account. 

Feature extraction using mutual information 

It would be a demonstration of the usefulness of our work if we could come up with 

novel methods of feature extraction from first principles using our framework. In this 

section, we develop a method to detect higher-order features in a much shorter time than 

the usual unsupervised blind search. The most interesting feature of this algorithm is that 

it is synthesized analytically using our framework. 

 

 If we have to learn one feature, there is little else we can do except picking the property 

setting it apart from other features. However, since the target program is a network of 

associated subroutines, we usually find many interrelated features in a dataset. Using this 

property we can come up with some additional schemes for extracting features. In the 

following section we use first-order features that have already been discovered to find 

higher-order features. 

 

Consider an associated subroutine fC with depth 2. Let the feature set of fC on the training 

string be {f}C. Assume that fc1 and fc2 are two associated subroutines with depth 1 that are 

completely influenced by fC. Let their feature sets be {f}c1 and {f}c2 respectively. Then 

{f}c1 and {f}c2 will be subsets of {f}C.  
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Figure 2: Common cause 

Because fc1 and fc2 share a common factor, fC, {f}c1 and {f}c2 will have some mutual 

information. This mutual information is actually information about fC, since it stems from 

fC. Once we have discovered fc1 and fc2, we may extract this mutual information to learn 

fC. This turns the process of unsupervised blind searching of fC to one of gradient descent. 

Thus the discovery of higher-order associated subroutines may be facilitated by this 

mutual information.  

 

ALGORITHM: EXTRACT HIGHER ORDER FEATURE 

Given: Two discovered features fc1 and fc2 

Preconditions: fc1 and fc2 share some higher order feature fC, all information about fC is 

contained in fc1 and fc2 

Output: fC 

1. Let {f}c1 be the input for a supervised learning algorithm SL1. Let {f}c2 be the 

training signal for SL1. 

Let {f}c2 be the input for a supervised learning algorithm SL2. Let {f}c1 be the 

training signal for SL2. 
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2. Cease learning when outputs of SL1 and SL2 are sufficiently similar. 

3. Present output of SL1 as fC 

END ALGORITHM: EXTRACT HIGHER ORDER FEATURE 

 

Since the training signal for {f}c1 is {f}c2, the only part of {f}c1 that would be able to 

model itself after {f}c2 is the mutual information between {f}c1 and {f}c2. This mutual 

information will be information about fC. SL1 and SL2 may be separate instances of the 

same algorithm. The second precondition is not necessary; all information about fC need 

not be contained in fc1 and fc2. Even partial discovery of fC is helpful. The method could 

be extended to more than two variables in case fC is distributed sparsely over many 

features. Of course, in order to use this method, we still have to know which features 

share a common cause so that we can pass this subset to the supervised learning 

algorithm. We may know this by keeping a correlation matrix for all the features. 

Variations of this idea are used in some existing learning methods [Bec92], [JKF03].  

 

Such mutual information depends on the richness of interaction among the associated 

subroutines. We contend that such richness is widely present in nature, making this a 

lucrative factor to model into algorithms dealing with real-world problems. 

The most important thing about this algorithm, and its most alluring feature, is the fact 

that this algorithm was designed by analytical synthesis. If algorithms can be designed by 

deduction instead of induction, then it opens up a whole new avenue for designing 

learning algorithms. For instance, it may be possible to combine a deductive system (or a 

theorem prover) with this framework to design a learning algorithm generator. 
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Discussion on Feature Extraction 

It is noteworthy that subroutines are defined by their being used multiple times. This 

extends to the defining property of a feature being that it is present in multiple elements. 

Such a definition based on utility has the advantage of eliminating chimerical features 

that may be included in a simple combinatorial count. 

 

The question arises; will a target concept have one objective smallest program? Though it 

is unlikely that vastly different programs of the same Kolmogorov complexity would 

represent a concept equally well, it is intuitively obvious that in some cases we may move 

around the subroutines within a program to form a different program of the same size. 

Alternatively, a small section of a program may be rewritten in a different but equivalent 

way, forming a different program. In any case, if there are multiple programs to choose 

from, we may pick any one. All of the programs would be subject to the principles 

developed in this thesis. It would make an interesting direction for future research to 

study if it is possible for one such program to have more subroutines than another one; or 

if a certain amount of shared computation is inherent to a given task. 

 

There are some deeper philosophical implications of this work. The upper limit on the 

number of features in a dataset presents an upper limit on the amount of knowledge 

extractable from the data. The presented structure for the target program also has 

implications for epistemology. 
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Rich Prevalence of Associated Subroutines in Nature 

What does a target program typically look like in nature? Natural factors like redundancy, 

common causes, fanning out of causal chains, sharing of material, etc, all lead to shared 

computation. Thus we contend that associated subroutines are highly prevalent in 

reasonably complex natural systems. Most systems in nature consist of a large number of 

associated subroutines in a rich web of interconnections. This agrees with observations in 

the real world. For an example, consider any accepted physical, chemical, or biological 

theory. All such natural theories have a large number of commonly used concepts that 

influence other concepts or explain observations. These concepts are like associated 

subroutines and some of them were discovered in a manner similar to feature extraction. 

In fact, the only systems that appear to not exhibit such structure are either trivially 

simple systems, or artificial man-made problems like cryptography. 

An Example - Face Recognition 

 We discuss face recognition by feature detection as an example of learning by example 

decomposition. In this case, X  is the database of face images. x  would be a single face. 

Face recognition by feature detection works by recognizing the salient features on a 

human face and then using them to classify the faces. So a subconcept would be a 

recognized feature on a face. 

 

We describe a technique used in [BP93]. Each face is normalized and then represented by 

a database entry whose fields are a digital image of the face's frontal view and a set of 

four masks representing eyes, nose, mouth, and face (see figure 1). The location of the 

four masks relative to the normalized eye position is the same for the whole database. For 
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recognition, the unclassified image is compared with the images in the database, 

returning a vector of one matching score per feature. The unknown face is then classified 

as the one giving the highest cumulative score. 

 

Figure  3: Different regions used for template matching (from [BP93]) 

   

In this example the four masks are the four subconcepts. The fact that the four masks are 

in the same location corresponds to the assumption of consistent relevance. Since these 

masks exist for each example, the assumption of total relevance holds true in this case. 

The assumption of contiguity also holds. However, the assumption of non-overlap does 

not hold as one of the masks is the face (face being the region below the eyebrows). 

This example takes advantage of many of the ideas discussed in previous sections. 

Classification of a mask is an easier individual learning task than classification of the 

whole image because of the reduced size. The spurious parts of an example (the region 

external to the masks) are ignored. Decomposing the image into masks allows the 

classification process to focus on much smaller areas. We know that the complexity of 



 61

this process increases exponentially with size. Thus the hypothesis space is exponentially 

reduced improving the classification success rate (by allowing better learning in a smaller 

mask) and simplifying the learning process. It is important to note that the computational 

complexity of learning a feature may not change, but the sample complexity does. 

Though it is not explicitly used in [BP93], these masks are embedded in an environment 

of related tasks. This fact may be used implicitly by employing the same learning 

algorithm for all masks with a high success rate. Knowledge of these subconcepts or, 

specifically, masks allows for a better understanding of what is important to face 

recognition. This may help in future research to further refine the masks. 
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CHAPTER 5: ADVANTAGES 

We developed the condition for propitious PAC decomposition in the previous section. It 

turned out that this condition was rather easy to satisfy for the class of learning problems 

under discussion. In this section we analyze the reason why this is so, and also discuss 

some less obvious benefits of learning by example decomposition. 

The savings arise from multiple sources. We discuss the following in this section.   

    • Exponentially reduced hypothesis space  

    • Learning in parallel  

    • Simpler individual learning tasks  

    • Subconcepts embedded in an environment of related tasks  

    • Exploitable relationships between subconcepts  

    • Detection and ignoring of spurious parts of examples  

    • Reuse of subconcepts  

    • A better understanding (e.g., credit assignment)  

Each one of these ideas is practically exploitable in learning algorithms. This can be done 

by extracting bias [Utg86], or clues to build into learning algorithms. In fact, using bias is 

the only way we can statistically improve the performance of learning algorithms over 

blind search. The following discussion sheds light on some ways we may extract bias 

from example decomposition. 
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Exponentially Reduced Hypothesis Space 

The most obvious way in which example decomposition provides bias is by splitting the 

hypothesis space among the subconcepts. The maximum cardinality for a concept space 

kC  for a concept tc  defined on examples of size k  is k2 . Whereas the maximum 

cardinality for a subconcepts' concept space is n

k

2 , assuming n  equal length subconcepts. 

This is an exponential reduction in hypothesis space. 

 

Decomposing a concept into smaller concepts provides exponential savings in terms of 

the size of the hypothesis space. This translates to reduced sample complexity. 

Learning in Parallel 

With the assumption of total relevance in example decomposition, all the subconcepts are 

learned in parallel. This condition is reflective of a large class of natural problems where 

each example is descriptive of the entire system. Examples include face recognition, all 

biometrics (thumbprint recognition, cornea recognition, etc), temporal data from physical 

systems where each state reflects the whole system, etc. The total sample complexity will 

be that of the 'weakest link', the subconcept that requires the most examples. The other 

subconcepts would be learned before it. This also leads to a huge reduction in sample 

complexity. 

Simpler Individual Learning Tasks 

 Since example decomposition splits one large concept into many smaller ones, it breaks 

down the process of learning into smaller chunks. Also to be considered is the fact that a 

linear decomposition in target concept size leads to exponential decomposition of the 
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hypothesis space. We can thus use less computationally intensive learning algorithms and 

weaker machines to learn the subconcepts one by one. In complex learning problems that 

call for inordinate computational resources, learning without decomposition may not be 

possible at all. 

 

A learning machine would need access to a maximum hypothesis space of k2  to learn a 

concept tc  defined on examples of size k . However, if the concept is decomposed into n  

equal sized subconcepts, then the learning machine only needs a hypothesis space of  

.1)1)((,2max 







 knn

k

 

In physical terms, a machine would need exponentially reduced state space to learn by 

decomposition. 

 

Example 2 Suppose a learning problem has 100=k , and 10=n  equal sized 

subconcepts. A learning machine for this problem without decomposition would need 

1002  possible states. The worst case for the amount of storage required is 1012 . The 

computation would be made even more inefficient given that 100  bits would be required 

to represent a state, which is greater than the width of most modern processor registers. 

However, with example decomposition, the worst case for storage space for a single 

subconcept is 112 . Given 10  subconcepts, even if all of them have to be stored 

simultaneously, the storage requirement is 122 . Each state would require 10  bits for 

representation, which is subject to fewer hardware constraints.  
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Example 3 Humans can hold 27   objects in their short term memory. Given this 

limitation, complex or voluminous learning would be impossible for humans without 

focusing on independent subproblems, abstraction, or chunking. All of these can be 

expressed as learning by decomposition of one form or another.  

Subconcepts Embedded in an Environment of Related Tasks 

 Baxter [Bax00] showed that bias can be automatically learned for learning tasks from the 

same environment. This meta-learning helps the learning of later tasks. The subconcepts 

exist in space of related problems. As such, the framework for meta-learning developed 

by Baxter is applicable to them. This may be used to refine the upper limit on the sample 

complexity of learning the subconcepts. 

 

We have a set of probability distributions nPPP ,, 21   on YX   for each subconcept 

nccc ,, 21  . This may be viewed as learning multiple related tasks embedded in an 

environment. Suppose we sample m  times for each one of the n  subconcepts, then we 

generate an samplemn ),( . Refer to [Bax00] for details of definitions and terminology. 

 

Theorem 1. Suppose X  and Y  are separable metric spaces and Q  is any distribution on 

P . Suppose z  is an samplemn ),(  generated by sampling n  times from P  according to 

Q  to give nPP ,,1  , and then sampling m  times from each iP  to generate 

niyxyxz imimiii ,1,=)},,(,),,{(= 11  . Let H  be any permissible hypothesis space 

family. If the number of tasks n  satisfies  
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then with probability of at least 1 , all Hh , will satisfy  
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Proof. The proof for this theorem may be found in [Bax00] and will not be reproduced 

here.  

 

We may simply restate the above theorem for subconcepts. 

 

Theorem 2. Suppose X  and Y  are separable metric spaces and D  is any distribution on 

YX  . Suppose z  is an samplem   generated by sampling YX   m  times according to 

D . Let H  be a hypothesis space used to learn a target concept Cct  . If the number of 

decomposed subconcepts n  satisfies  
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then with probability of at least 1 , all Hh , will satisfy  
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Proof. Follows from previous theorem.  

Exploitable Relationships Between Subconcepts 

 Having developed an understanding of the internal structure of a decomposed target 

concept, we may now use this knowledge to develop bias in a variety of ways. We may 

now exploit the web of influence between subconcepts to discover them. The following 

examples list a couple of ways. 

 

The next example provides a less obvious case. It takes advantage of relationships 

between subconcepts to extract higher order subconcepts. 

 

Example 4 Consider the case where we have three subconcepts, ,, 21 cc  and 3c ; and 3c  

influences 1c , and 2c . In this case 1c  and 2c  carry some mutual information about 3c . If 

1c  and 2c  are learned, we can extract this information to obtain bias for learning 3c . This 

idea has been used in [Bec92]. One way to do this, for example, is to provide 1c  and 2c  

as inputs to a neural network and use 3c  as a training signal. In this case, we may also 

perform efficient unsupervised learning by training 2c  and 3c  against each other, i.e., 
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with 3c  as the training signal and 2c  as the input, or vice versa. This will cause the 

learner to settle on the mutual information between them, which is information about 1c .  

 

A subconcept influences another if its state somehow influences the other. So, the state of 

its relevant set tells us something about the state of the other's relevant set. This idea may 

be used to extract bias for learning the influence variable. But to do so, we have to do 

away with the assumption of non-overlap. We discuss the cost of doing so in Chapter 6. 

 

Definition 5 (Influence. ) A subconcept ic  influences subconcept jc  if  

. ji RR  

 

Additionally, the degree of overlap between the relevant sets would decide the degree of 

influence, but we save this idea for development in later work. 

 

Example 5 The most straightforward idea arises from the fact that, if two subconcepts 

influence each other, each influences the states the other may assume. So if a subconcept 

1c  influences 2c , and we have already learned 1c , then the states that 1c  assumes 

influence the states that 2c  may assume as well. Thus knowledge of 1c  simplifies the 

learning of 2c .   

Detection and Ignoring of Spurious Parts of Examples 

 It is possible that not the entire example would be relevant to learning. So, a subset of 

bits in the example may be enough to classify it perfectly. In this case, the rest of the bits 
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are spurious, and increase the sample complexity and time complexity of learning. The 

sample complexity is increased because the hypothesis space is proportional to the size of 

the examples. The hypothesis space on examples of size k  is k2 . Also, larger examples 

take longer to read and process, increasing the time complexity. 

 

Learning by example decomposition may prevent spurious parts of the example from 

being considered, as we determine the relevant set of each subconcept. If these relevant 

sets are optimal, then we end up considering exactly the useful part of an example. 

Reuse of Subconcepts 

 It is possible for the same subconcept to be relevant for two separate substrings in the 

example. In this case we have to learn it only once. This sort of reuse is not easy in 

learning without decomposition. 

 

Example 6 Consider a function zcbaf ),,(:  being learned. Let f  be  

).(sin)/(tan*)(sin= cbaz  

If we decomposed the example into sets },{},{ ba  and }{c , then it would be possible to 

learn the subconcept ()sin  once for }{a  and then reuse it for }{c . It only adds trivial 

complexity to check if available subconcepts classify other parts of the example as well. If 

we were learning the function without decomposition, this reuse would not have been 

simple without heavy bias.   

 

The success of this approach depends on the extent of reuse of subconcepts. The question 

is, how often can we expect to find repeated computation in learning problems? Natural 
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factors like redundancy, common causes, fanning out of causal chains, sharing of 

material, etc., all lead to shared computation in natural systems. Thus it seems likely that, 

at least within a natural system, we might encounter reuse of subconcepts. 

A Better Understanding 

 Knowledge of the subconcepts gives us an insight into the internal structure of the target 

concept. This knowledge may be used in numerous ways to provide bias. For example, 

having decomposed the example for subconcepts, we can see which subconcept provides 

the best classification. Thus we can perform credit assignment and determine what part of 

the example is more important than others. This is one example; as mentioned before, this 

detailed knowledge can yield bias in many problem specific and independent ways. In 

fact, some of the previous ideas, such as ignoring spurious example parts, may be seen as 

an outcome of this knowledge. 

 

 

 

 



 71

CHAPTER 6: DISCUSSION 

Relevant Set Detection 

 In this thesis, we partitioned examples to decompose a target concept. However, 

partitioning the examples may not be as straightforward as we considered, or perhaps we 

may need to partition the hypothesis space some other way. For example, we may use 

domain decomposition where a subset of presented examples may be relevant for a 

subconcept. We generalize the decomposition of the hypothesis space as the relevant set 

detection problem. This problem was hinted upon by Valiant in [Val84]. 

 

 Relevant Set Detection Problem 

Instance: A sample set Xz  and a concept c . 

Question: For each zzi  , how can we determine if czi  ?  

 

This definition covers example decomposition for Boolean learning if we consider xz = . 

Then iz  becomes a bit xbi  . The relevant set detection problem is fundamental to 

decomposition as after this point, learning the subconcepts is usually a straightforward 

process. Problem specific bias would play an important role here. In the worst case 

scenario, we would have to solve this problem in an unsupervised manner. 

 

Representation plays an important role in detecting relevant sets. We can say that 

different representations of the learning problem correspond to different hypothesis 

spaces. So now, the choice of hypothesis space is an important consideration in 
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decomposability. Some hypothesis spaces would lend inherently to decomposability, 

while others would serve to obfuscate the relevant sets. In natural problems, some sort of 

transform may be required before the lines along which to decompose become clear. 

Notes on Assumptions Made in This Thesis 

We introduced four special assumptions while discussing sample complexity. Some of 

these assumptions are reflective of real world problems, while others simply facilitate 

analysis and do not cause a loss of generality. An important point to note is that these 

assumptions spell out the class of learning problems that we have considered in this 

thesis. 

 

The assumption of consistent relevance implies that a certain feature will always be 

found in a particular location. The assumption of total relevance facilitates analysis. If the 

influence is consistent, then it is allowable for some example Xx  to not serve as either 

a positive or negative example for some subconcept. However, in natural problems 

complete influence would usually go with consistent influence. Usually, if there is a 

placeholder for an example, it would hold something meaningful. 

 

The assumption of contiguity is a natural one. For example, in image recognition, all the 

pixels belonging to a feature (at least in low level features) are localized. If the elements 

of a subconcept are not contiguous in a real problem, then there exist either transforms, or 

some other hints (for example, all the elements change together) that allow for relatively 

easy grouping of the elements. If this is not the case, then learning becomes much harder. 
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The assumption of non-overlap may be done away with by a small increase in sample 

complexity. If overlap was allowed, then we'd have to insert two markers in the example 

for each subconcept. In equation 1, instead of inserting 1n  markers in an example, we 

would have to insert n2  markers. Then the sample complexity of sample decomposition 

would be  

1)(2=)
1

,
1

,( knkp
exex

ex 
  (8) 
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CHAPTER 7: CONCLUSION 

This thesis presented novel research on learning by decomposition. By using results from 

many diverse disciplines in computer science, such as computational learning theory, 

Kolmogorov complexity, and statistical learning theory, we developed a general 

theoretical framework for learning of concepts by decomposition of examples. We 

studied the different steps involved in the process: decomposition, learning subconcepts, 

and amalgamation; and analyzed the sample complexity of each of these processes, as 

well as of decomposition as a whole. We developed the conditions under which 

decomposition is advantageous. 

 

We translated our work in example decomposition to develop a theory of feature 

extraction. No general theory of feature extraction has been attempted before this. In fact, 

there had been little theoretical understanding of exactly what a feature is. We defined 

many basic concepts in feature extraction and provided a theoretical framework for the 

process. Doing so afforded novel insights from which we generated an algorithm for 

feature extraction. We also provided some constructive theorems that may provide 

avenues for future research. 

 

Finally, we discussed some reasons why learning by example decomposition works as 

well as it does, and discussed some problems and open questions in the field. 
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Future Research in Learning by Example Decomposition 

The work presented in this thesis is of a fundamental, theoretical nature. Being so, it 

offers many avenues for future research. We organize these directions under three broad 

categories. 

 Theoretical research 

 Meta theoretical research 

 Applied research 

Theoretical research involves a straightforward extension of this work, expanding and 

generalizing the theory presented in this thesis further. Meta theoretical research refers to 

the use of this work as a meta theory. Applied research encompasses the direct and 

indirect practical uses of this theory. Finally, we further our case study of feature 

extraction by discussion some research leads specific to that field. 

Theoretical Research 

We introduced some basic terminology and concepts, and used them to develop our 

results. However, three important questions remain immediately open, each providing a 

lucrative direction of research. These are: 

    • Understanding where to partition examples.  

    • Developing the relationships between concepts.  

    • Decomposing the domain.  

 

Perhaps the most important question and what would be the most significant contribution 

of this work in the foreseeable future is understanding where to partition the examples for 

decomposition. An exhaustive search raises the cost of decomposition, in many cases 
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compromising its propitiousness. Since, in practice, example decomposition is a 

ubiquitous approach, we instinctively feel that natural fault lines exist for decomposition 

and that these ‘cracks’ are discoverable, perhaps cheaply. The question is, does there 

exist some general, theoretical way to specify how to discover these fault lines, as 

opposed to domain specific heuristics? The answer is, yes. We already have one way of 

doing so, which is introduced in chapter 4 – theorem 2. That theorem states that all 

elements of a feature set have similar Kolmogorov complexity, unless the elements 

overlap with another set. So one answer to this query is that the fault lines for 

decomposition tend to divide the example into chunks of differing Kolmogorov 

complexities. An immediate extension would then be to incorporate Kolmogorov 

complexity more in the main theory, and to develop this result in a general setting, 

independent of feature extraction. However, since Kolmogorov complexity is 

incomputable, we may prefer to develop the same result with some other complexity 

measure to provide a more usable result. 

 

Another extension of this theory that promises yields in applied research is developing 

the relationships between subconcepts. In chapters 4 and 5, we provided some examples 

of this by defining influence, and developing the idea of mutual information between 

concepts in light of our theory. Future directions of research here may involve 

quantifying influence, and developing a theory of how it works and the different ways in 

which it manifests itself.  
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A straightforward addition to this body of research would be to study domain 

decomposition instead of example decomposition. Many of the results would remain the 

same, but doing so would make this theory easier to correspond with other, existing 

theories and learning algorithms, enhancing the use of this work as a meta theory. 

Meta Theoretical Research 

The work presented in this thesis may be considered a meta theory. The directions of 

research that avail themselves under this rubric are: - 

 Generate new theories 

 Use these theories to describe current learning algorithms and theories 

 

In this thesis, we interpreted the theory of learning the concept decomposition to generate 

a theory of feature extraction. This process involves recasting the terminology and 

axioms in a domain specific context, and then porting over the results. Usually some 

additional terminology (e.g. feature sets) needs to be defined, which leads to domain 

specific results. This process may be repeated for other fields that lack adequate 

theoretical structure (as in the case of feature extraction), or do not have results that may 

be provided by the theory of concept decomposition. 

 

Describing existing theories and ideas in machine learning, such as concepts embedded in 

an environment [Bax00], in our framework affords a deeper understanding of both those 

ideas and our framework. In many cases this would produce new results. 
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Applied Research 

The work presented in this thesis leads to many venues of applied resaerch. We organize 

them under the following categories: 

 Direct (stemming from the theory of example decomposition) 

 Indirect (stemming from generated theories) 

 

A future direction for direct applied research would be to develop an algorithm that 

groups subconcepts by either their approximate Levin complexity or some other measure, 

and then learns them keeping in mind the different factors we considered in chapter 5. As 

the theory develops further, more and more avenues for developing learning algorithms 

would open up. 

 

An example of indirect applied research is algorithms for feature extraction. Using the 

theory of example decomposition, we generated the theory of feature extraction. This 

theory, in turn, was used to generate new results and explain existing ideas in feature 

extraction. Theorems 3, 4 and 5 in chapter 4 may be used to make new feature extraction 

algorithms. Results such as an upper limit on the number of features in a given dataset 

allow us to modify existing algorithms that use that limit. 

Future Research in Feature Extraction 

The purpose of this part of the thesis was to interpret problem decomposition for a 

specific domain. The structure of the target program can provide us with many more 

clues for feature extraction. We have developed a few in this thesis but there is much 

more to be done. For example, the set of relationships of an associated subroutine with 
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other subroutines is the context for that associated subroutine. The context of a feature 

may be helpful in extracting it. Existing ideas like multitask learning [Car93], and 

automatically learning bias in a related environment [Bax00] can be expressed in and 

furthered using our framework. 

 

Another line of future research we intend to pursue is to develop the framework further, 

using it to analyze existing methods and develop new ones, including novel feature 

extraction algorithms based on the results of theorems 3, 4 and 5 in chapter 4.  
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GLOSSARY 

The following table provides a glossary of the mathematical terms used in the thesis.   

Table 1: Mathematical Terms 

  Symbol   Description  

 tc    Target concept  

X    Instance/input space  

Y    Output space  

C    Concept space 

 x    Element of X  

y    Element of Y  

z    Data set 

D    Distribution on YXct    

h    Hypothesis  

 (.)f    Function combining subconcepts 

k    Size of an example 

kC    Concept class over examples of size k  

 C    Concept class over examples of 1>k  

kH    Concept class over examples of size k  

H    Hypothesis class over examples of 1>k  

L    A learning algorithm  

),,( p    A polynomial function over three inputs  

m    Number of samples  
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)(mL    Hypothesis returned by L  with input of m  samples 

    Confidence parameter  

    Accuracy parameter  

ic    Subconcept in tc  

cS    Smallest set of examples to learn c   

n    Number of subconcepts  

iR    Relevant set  

ib    Bit in subconcept i   

icx    Substring of x  influenced by ic  

VCD    VC dimension for a class  

][kC    Concept class over examples of size at most k   

F    A concept class  

d    VC dimension value 
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