Counterexample-guided inductive synthesis CEGIS is used to synthesize
programs from a candidate space of programs. The technique is guaranteed to
terminate and synthesize the correct program if the space of candidate programs
is finite. But the technique may or may not terminate with the correct program
if the candidate space of programs is infinite. In this paper, we perform a
theoretical analysis of counterexample-guided inductive synthesis technique. We
investigate whether the set of candidate spaces for which the correct program
can be synthesized using CEGIS depends on the counterexamples used in inductive
synthesis, that is, whether there are good mistakes which would increase the
synthesis power. We investigate whether the use of minimal counterexamples
instead of arbitrary counterexamples expands the set of candidate spaces of
programs for which inductive synthesis can successfully synthesize a correct
program. We consider two kinds of counterexamples: minimal counterexamples and
history bounded counterexamples. The history bounded counterexample used in any
iteration of CEGIS is bounded by the examples used in previous iterations of
inductive synthesis. We examine the relative change in power of inductive
synthesis in both cases. We show that the synthesis technique using minimal
counterexamples MinCEGIS has the same synthesis power as CEGIS but the
synthesis technique using history bounded counterexamples HCEGIS has different
power than that of CEGIS, but none dominates the other.Comment: In Proceedings SYNT 2014, arXiv:1407.493