16 research outputs found

    Exploiting Temporal Complex Network Metrics in Mobile Malware Containment

    Full text link
    Malicious mobile phone worms spread between devices via short-range Bluetooth contacts, similar to the propagation of human and other biological viruses. Recent work has employed models from epidemiology and complex networks to analyse the spread of malware and the effect of patching specific nodes. These approaches have adopted a static view of the mobile networks, i.e., by aggregating all the edges that appear over time, which leads to an approximate representation of the real interactions: instead, these networks are inherently dynamic and the edge appearance and disappearance is highly influenced by the ordering of the human contacts, something which is not captured at all by existing complex network measures. In this paper we first study how the blocking of malware propagation through immunisation of key nodes (even if carefully chosen through static or temporal betweenness centrality metrics) is ineffective: this is due to the richness of alternative paths in these networks. Then we introduce a time-aware containment strategy that spreads a patch message starting from nodes with high temporal closeness centrality and show its effectiveness using three real-world datasets. Temporal closeness allows the identification of nodes able to reach most nodes quickly: we show that this scheme can reduce the cellular network resource consumption and associated costs, achieving, at the same time, a complete containment of the malware in a limited amount of time.Comment: 9 Pages, 13 Figures, In Proceedings of IEEE 12th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WOWMOM '11

    The influence of user mobility in mobile virus propagation: An enterprise mobile security perspective

    Get PDF
    In this paper, the authors review the usage of mobile devices in the enterprise and also the major impact from the infected mobile devices.Then the authors highlight the virus threat to enterprise mobile security and how critical the problems are.The authors then discuss the mobile virus infection dynamics which are the Bluetooth infections, mobile emails infections and mobile internet infections which are the threats to the enterprise mobile security. Then the authors discuss on the influences of user mobility issue in spreading mobile viruses before concluded this article

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Malicious botnet survivability mechanism evolution forecasting by means of a genetic algorithm

    Get PDF
    Botnets are considered to be among the most dangerous modern malware types and the biggest current threats to global IT infrastructure. Botnets are rapidly evolving, and therefore forecasting their survivability strategies is important for the development of countermeasure techniques. The article propose the botnet-oriented genetic algorithm based model framework, which aimed at forecasting botnet survivability mechanisms. The model may be used as a framework for forecasting the evolution of other characteristics. The efficiency of different survivability mechanisms is evaluated by applying the proposed fitness function. The model application area also covers scientific botnet research and modelling tasks. Article in English. Kenkėjiškų botnet tinklų išgyvenamumo mechanizmų evoliucijos prognozavimas genetinio algoritmo priemonėmis Santrauka. Botnet tinklai pripažįstami kaip vieni pavojingiausių šiuolaikinių kenksmingų programų ir vertinami kaip viena iš didžiausių grėsmių tarptautinei IT infrastruktūrai. Botnettinklai greitai evoliucionuoja, todėl jų savisaugos mechanizmų evoliucijos prognozavimas yra svarbus planuojant ir kuriant kontrpriemones. Šiame straipsnyje pateikiamas genetiniu algoritmu pagrįstas modelis, skirtas Botnet tinklų savisaugos mechanizmų evoliucijai prognozuoti, kuris taip pat gali būti naudojamas kaip pagrindas kitų Botnet tinklų savybių evoliucijai modeliuoti. Skirtingi savisaugos mechanizmai vertinami taikant siūlomą tinkamumo funkciją. Raktiniai žodžiai: Botnet; genetinis algoritmas; prognozė; savisauga; evoliucija; modeli

    Enhancing mobile learning security

    Get PDF
    Mobile devices have been playing vital roles in modern day education delivery as students can access or download learning materials on their smartphones and tablets, they can also install educational apps and study anytime, anywhere. The need to provide adequate security for portable devices being used for learning cannot be underestimated. In this paper, we present a mobile security enhancement app, designed and developed for Android smart mobile devices in order to promote security awareness among students. The app can also identify major and the most significant security weaknesses, scan or check for vulnerabilities in m-learning devices and report any security threat

    Scattered Security System for Mobile Networks through Assorted Contraption

    Get PDF
    Malware is malevolent programming which irritates the system PC operation, hacking the touchy data and gets to the private frameworks. It is only a project which is particularly intended to harm the PC it might be an infection or worm. Along these lines, keeping in mind the end goal to defeat this issue a two-layer system model is exhibited for reenacting infection spread through both Bluetooth and SMS. The two strategies are examined for controlling the versatile infection engendering. i.e., preimmunization and versatile appropriation strategies drawing on the philosophy of self-sufficiency situated processing (AOC). Yet, this strategy does not consider the mixture infections that disperse by means of both BT and SMS channels. In this way, to expand the productivity of controlling the engendering of cell telephone infections, we present a creative methodology called a Hybrid infection identification model. The cross breed malware can be disseminated by both end to-end informing administrations through individual social correspondences and short-extend remote correspondence administrations. In this system, another differential comparison based technique is proposed to analyze the blended practices of   Delocalized virus and swell based spread for the cross breed malware in summed up informal communities including of individual and spatial social relations. A test result demonstrates that the proposed framework is computationally viable to recognize the crossover malware. Studies on the engendering of malware in versatile systems have uncovered that the spread of malware can be very inhomogeneous. Stage differing qualities, contact list use by the malware, grouping in the system structure, and so on can likewise prompt contrasting spreading rates. In this paper, a general formal structure is proposed for utilizing such heterogeneity to infer ideal fixing approaches that achieve the base total cost because of the spread of malware and the extra charge of fixing. Utilizing Pontryagin's Maximum Principle for a stratified scourge model, it is logically demonstrated that in the mean-field deterministic administration, ideal patch spreads are straightforward single-edge arrangements. Through numerical recreations, the conduct of ideal fixing approaches is examined in test topologies and their points of interest are illustrated

    A Survey on Security for Mobile Devices

    Get PDF
    Nowadays, mobile devices are an important part of our everyday lives since they enable us to access a large variety of ubiquitous services. In recent years, the availability of these ubiquitous and mobile services has signicantly increased due to the dierent form of connectivity provided by mobile devices, such as GSM, GPRS, Bluetooth and Wi-Fi. In the same trend, the number and typologies of vulnerabilities exploiting these services and communication channels have increased as well. Therefore, smartphones may now represent an ideal target for malware writers. As the number of vulnerabilities and, hence, of attacks increase, there has been a corresponding rise of security solutions proposed by researchers. Due to the fact that this research eld is immature and still unexplored in depth, with this paper we aim to provide a structured and comprehensive overview of the research on security solutions for mobile devices. This paper surveys the state of the art on threats, vulnerabilities and security solutions over the period 2004-2011. We focus on high-level attacks, such those to user applications, through SMS/MMS, denial-of-service, overcharging and privacy. We group existing approaches aimed at protecting mobile devices against these classes of attacks into dierent categories, based upon the detection principles, architectures, collected data and operating systems, especially focusing on IDS-based models and tools. With this categorization we aim to provide an easy and concise view of the underlying model adopted by each approach
    corecore